Searching for a Miracle
Post Carbon Institute & International Forum on Globalization - September 2009 [read the full report: »Download the PDF (2.61 MB)]:
Overview
This report is intended as a non-technical examination of a basic question: Can any combination of known energy sources successfully supply society’s energy needs at least up to the year 2100? In the end, we are left with the disturbing conclusion that all known energy sources are subject to strict limits of one kind or another. Conventional energy sources such as oil, gas, coal, and nuclear are either at or nearing the limits of their ability to grow in annual supply, and will dwindle as the decades proceed—but in any case they are unacceptably hazardous to the environment. And contrary to the hopes of many, there is no clear practical scenario by which we can replace the energy from today’s conventional sources with sufficient energy from alternative sources to sustain industrial society at its present scale of operations. To achieve such a transition would require (1) a vast financial investment beyond society’s practical abilities, (2) a very long time—too long in practical terms—for build-out, and (3) significant sacrifices in terms of energy quality and reliability.
Perhaps the most significant limit to future energy supplies is the “net energy” factor—the requirement that energy systems yield more energy than is invested in their construction and operation. There is a strong likelihood that future energy systems, both conventional and alternative, will have higher energy input costs than those that powered industrial societies during the last century.We will come back to this point repeatedly.
The report explores some of the presently proposed energy transition scenarios, showing why, up to this time, most are overly optimistic, as they do not address all of the relevant limiting factors to the expansion of alternative energy sources. Finally, it shows why energy conservation (using less energy, and also less resource materials) combined with humane, gradual population decline must become primary strategies for achieving sustainability.
***
The world’s current energy regime is unsustainable. This is the recent, explicit conclusion of the International Energy Agency1, and it is also the substance of a wide and growing public consensus ranging across the political spectrum. One broad segment of this consensus is concerned about the climate and the other environmental impacts of society’s reliance on fossil fuels.The other is mainly troubled by questions regarding the security of future supplies of these fuels—which, as they deplete, are increasingly concentrated in only a few countries.
To say that our current energy regime is unsustainable means that it cannot continue and must therefore be replaced with something else.However, replacing the energy infrastructure of modern industrial societies will be no trivial matter. Decades have been spent building the current oil-coal-gas infrastructure, and trillions of dollars invested. Moreover, if the transition from current energy sources to alternatives is wrongly managed, the consequences could be severe: there is an undeniable connection between per-capita levels of energy consumption and economic well-being.2 A failure to supply sufficient energy, or energy of sufficient quality, could undermine the future welfare of humanity, while a failure to quickly make the transition away from fossil fuels could imperil the Earth’s vital ecosystems.
Nonetheless, it remains a commonly held assumption that alternative energy sources capable of substituting for conventional fossil fuels are readily available—whether fossil (tar sands or oil shale), nuclear, or a long list of renewables—and ready to come on-line in a bigger way. All that is necessary, according to this view, is to invest sufficiently in them, and life will go on essentially as it is.
But is this really the case? Each energy source has highly specific characteristics. In fact, it has been the characteristics of our present energy sources (principally oil, coal, and natural gas) that have enabled the building of a modern society with high mobility, large population, and high economic growth rates. Can alternative energy sources perpetuate this kind of society? Alas, we think not.
While it is possible to point to innumerable successful alternative energy production installations within modern societies (ranging from small home-scale photovoltaic systems to large “farms” of three-megawatt wind turbines), it is not possible to point to more than a very few examples of an entire modern industrial nation obtaining the bulk of its energy from sources other than oil, coal, and natural gas. One such rare example is Sweden, which gets most of its energy from nuclear and hydropower. Another is Iceland, which benefits from unusually large domestic geothermal resources, not found in most other countries. Even in these two cases, the situation is more complex than it appears.The construction of the infrastructure for these power plants mostly relied on fossil fuels for the mining of the ores and raw materials, materials processing, transportation, manufacturing of components, the mining of uranium, construction energy, and so on. Thus for most of the world, a meaningful energy transition is still more theory than reality. But if current primary energy sources are unsustainable, this implies a daunting problem. The transition to alternative sources must occur, or the world will lack sufficient energy to maintain basic services for its 6.8 billion people (and counting).
Thus it is vitally important that energy alternatives be evaluated thoroughly according to relevant criteria, and that a staged plan be formulated and funded for a systemic societal transition away from oil, coal, and natural gas and toward the alternative energy sources deemed most fully capable of supplying the kind of economic benefits we have been accustomed to from conventional fossil fuels.
By now, it is possible to assemble a bookshelf filled with reports from nonprofit environmental organizations and books from energy analysts, dating from the early 1970s to the present, all attempting to illuminate alternative energy transition pathways for the United States and the world as a whole.These plans and proposals vary in breadth and quality, and especially in their success at clearly identifying the factors that are limiting specific alternative energy sources from being able to adequately replace conventional fossil fuels.
It is a central purpose of this document to systematically review key limiting factors that are often left out of such analyses.We will begin that process in the next section. Following that, we will go further into depth on one key criterion: net energy, or energy returned on energy invested (EROEI).This measure focuses on the key question: All things considered, how much more energy does a system produce than is required to develop and operate that system? What is the ratio of energy in versus energy out? Some energy “sources” can be shown to produce little or no net energy. Others are only minimally positive.
Unfortunately, as we shall see in more detail below, research on EROEI continues to suffer from lack of standard measurement practices, and its use and implications remain widely misunderstood. Nevertheless, for the purposes of large-scale and long-range planning, net energy may be the most vital criterion for evaluating energy sources, as it so clearly reveals the tradeoffs involved in any shift to new energy sources.
This report is not intended to serve as a final authoritative, comprehensive analysis of available energy options, nor as a plan for a nation-wide or global transition from fossil fuels to alternatives. While such analyses and plans are needed, they will require institutional resources and ongoing reassessment to be of value.The goal here is simply to identify and explain the primary criteria that should be used in such analyses and plans, with special emphasis on net energy, and to offer a cursory evaluation of currently available energy sources, using those criteria.This will provide a general, preliminary sense of whether alternative sources are up to the job of replacing fossil fuels; and if they are not, we can begin to explore what might be the fall-back strategy of governments and the other responsible institutions of modern society.
As we will see, the fundamental disturbing conclusion of the report is that there is little likelihood that either conventional fossil fuels or alternative energy sources can reliably be counted on to provide the amount and quality of energy that will be needed to sustain economic growth—or even current levels of economic activity—during the remainder of the current century.
This preliminary conclusion in turn suggests that a sensible transition energy plan will have to emphasize energy conservation above all. It also raises questions about the sustainability of growth per se, both in terms of human population numbers and economic activity.
June 27, 2011
June 25, 2011
Denmark: More CO₂ emissions with more wind
Some time ago, I created the following graph, juxtaposing annual Danish wind energy production and total CO₂ emissions from 1996 to 2006. The CO₂ emissions are on a reverse scale so that as they decrease the line would parallel an increase in wind production. But as can be seen, while wind production rose dramatically, CO₂ emissions remained essentially flat.
A related graph in the latest annual Energy Statistics report from Denmark (p. 37) shows two different measures of CO2 emissions just in electricity generation (below). The blue line is CO₂ emissions per fuel unit, which steadily declines as natural gas replaced oil and combined heat and power is increasingly used. But in the later 1990s the amount of CO₂ emissions per unit of electricity generated (the red line) starts to decrease at a slower rate, dramatically so after 1999.
This indicates that more fuel is being burned, or being burned less efficiently, per unit of electricity produced since the 1990s. And that phenomenon corresponds with the build-up of wind energy, as shown in the graph below, from page 9 of the same report.
tags: wind power, wind energy, environment, environmentalism
June 21, 2011
Heinrich Biber violin and basso continuo sonata in F major
The Amphion Consort: Jennifer Bennett on violin and Yair Avidor on theorbo.
June 17, 2011
Black shorts for the English countryside
Turnips, not turbines!
—Sir Roderick Spode (according to Rosemary Brian [click title])
—Sir Roderick Spode (according to Rosemary Brian [click title])
tags: wind power, wind energy, environment, environmentalism, human rights
June 13, 2011
Windfarm War
In episode 4 of the recent BBC2 series Windfarm Wars, one John Vincent (apparently of Pershore in Worcestershire) speaks at the new appeal hearing against the West Devon Borough Council's denial of planning permission for the Den Brook wind energy facility. Alas, you must imagine the scene, because BBC allows only U.K. residents to watch their shows and then only for a week. Also, for that reason, some of the dialog and narration in the following may be confusing as to who is speaking.
Further on in the same episode, the developer, Renewable Energy Systems, or RES, represented throughout by Rachel Ruffle, reveals their concern about "amplitude modulation', the characteristic pulsing noise from large wind turbines, presumably caused by the different air conditions at the top and bottom of the blades' sweep area:
Or in yet other words, AM is obviously a very serious problem, and there is no way to avoid it.
And the industry's message for those who will be adversely affected (in amenity at least and likely in health as well)?
Call in John Vincent.
tags: wind power, wind energy, wind turbines, wind farms, environment, environmentalism, human rights
Mr [John] Vincent, are you a supporter or an objector?I imagine the poor man had to be shot with a tranquilizer dart and is now held safely in a cage somewhere.
I'm a supporter.
Right.
Perhaps it's the word "developer" which creates the sort of animosity which will lead to the level of aggressive protest, to bring us to new debate, and these developers are actually caring scientists and engineers, wanting to help us and our world with clean energy.
To the point - now, this debate is supposedly based on what? Important new evidence? Do you know what the important new evidence was? It was an error. I asked a scientist, "How will this error in the sound figures affect the local populace?" "It is unmeasurable scientifically. It's inaudible to any creature." Yet to many people here today, it's an excuse to abuse our taxpayer in order to thrust forward a small group's own protests. It in no way reflects the will of the majority of people who would never believe that they would have to protest FOR wind. "Who would protest against it?" they might well ask.
Rather than try and persuade people who were already persuaded, the best thing is to talk to the people who I think don't understand the situation, so I made my mind up that I would have a quiet word with them, so I turned round and introduced myself to them and told them what I'd done and it just developed into something really quite bizarre.
And he knows Rachel [the developer's rep].
As soon as we got talking about it, he said, "Do you mind if I go over and bring the acousticians over from the developers?" I said, "No, great."
I'm stunned to see people objecting.
I generally agree with you, but there are specific times when these problems can arise, under certain conditions. So normally if you're standing a kilometre away, 800 metres or any distance, you can't hear them?
Absolutely. More than likely the case.
We have identified from the data that Rachel has provided us that there are specific conditions, atmospheric conditions that apply to the Den Brook area...
We would disagree with that identification. We've analysed our data as well.
If you can prove us wrong, that's fine, but you're refusing to respond to us.
We have responded in evidence.
You won't address amplitude modulation.
We have our meteorological witness...
Rachel, I got a letter from your solicitor, saying you will not be addressing amplitude modulation and you won't be addressing that in the noise conditions. It's like a denial that this stuff happens.
So the High Court case costs how much? How much has it cost you?
It's cost me a fortune. It's cost me £70,000 personally.
Couldn't you have spent that money on double glazing?
If double glazing sorted the issue...
When I stand by one of these turbines, I can't hear anything. Can I just finish?
There is a problem out there. I've been there. I've experienced it.
It can be irritating and noisy, so a great solution would be to put it somewhere quiet where it won't upset too many people. They've found that place, haven't they?
Just a minute. What are you saying?
I've just said, "Sod you, there aren't many people around it. Go ahead."
If it was going to affect thousands of people...
You are joking!
What makes you think you're so important? You've got to be joking. I don't believe you're so important.
You believe that all the people who live near windfarms aren't important, they're sacrificial?
I believe some things are good on this planet and some things are bad. A bit of noise pollution from a wind turbine... People live near motorways, they live in cities. They live in blocks of flats. You've got a lovely, ideal life set in the heart of Devon in an Area of Outstanding Natural Beauty. Enjoy it and stop whinging. The only people here today were from near Little Whinging or whatever it's called. Not all the people in the rest of the planet saying, "Build us some renewable energy."
Further on in the same episode, the developer, Renewable Energy Systems, or RES, represented throughout by Rachel Ruffle, reveals their concern about "amplitude modulation', the characteristic pulsing noise from large wind turbines, presumably caused by the different air conditions at the top and bottom of the blades' sweep area:
As promised, the following Monday, RES put in their response to Mike's team's AM noise condition.In other words, AM won't occur, but if you place conditions to prevent it, the wind industry will collapse.
They argue that a condition is unnecessary as excessive AM is rare and it's not recommended in ETSU guidelines.
They also say stable atmospheric conditions at the appeal site are rare too, and in their view, conditioning AM would cause profound damage to the UK wind industry.
Or in yet other words, AM is obviously a very serious problem, and there is no way to avoid it.
And the industry's message for those who will be adversely affected (in amenity at least and likely in health as well)?
Call in John Vincent.
tags: wind power, wind energy, wind turbines, wind farms, environment, environmentalism, human rights
June 11, 2011
Wind energy to offset emissions from cows
Cows belch and fart methane, a gas with 25 times the greenhouse effect as carbon dioxide. It was calculated elsewhere that in Vermont, installing 1 megawatt of wind power would have the equivalent effect on greenhouse gas emissions as removing 0.4 of a cow from the state, that the effect of the 145 MW of approved new wind projects on four ridgelines would be like removing 58 cows.
So how much wind power would have to be erected to offset the greenhouse gas emissions of all 150,000 of Vermont's cows?
375,000 MW. 125,000 turbines the size of the 21 planned for Lowell Mountain.
wind power, wind energy, wind turbines, wind farms, environment, environmentalism, vegetarianism, Vermont
So how much wind power would have to be erected to offset the greenhouse gas emissions of all 150,000 of Vermont's cows?
375,000 MW. 125,000 turbines the size of the 21 planned for Lowell Mountain.
wind power, wind energy, wind turbines, wind farms, environment, environmentalism, vegetarianism, Vermont
Sweden's Lesson for Real Sustainability
Firmin DeBrabander, Chair of Humanistic Studies at Maryland Institute College of Art, writes at Counterpunch:
What if electric cars made pollution worse, not better? What if they increased greenhouse gas emissions instead of decreasing them? Preposterous you say? Well, consider what's happened in Sweden.
Through generous subsidies, Sweden aggressively pushed its citizens to trade in their cars for energy efficient replacements (hybrids, clean diesel vehicles, cars that run on ethanol). Sweden has been so successful in this initiative that it leads the world in per capita sales of 'green cars.' To everyone's surprise, however, greenhouse gas emissions from Sweden's transportation sector are up.
Or perhaps we should not be so surprised after all. What do you expect when you put people in cars they feel good about driving (or at least less guilty), which are also cheap to buy and run? Naturally, they drive them more. So much more, in fact, that they obliterate energy gains made by increased fuel efficiency.
We need to pay attention to this as GM and Nissan roll out their new green cars to great fanfare. The Chevy Volt, a hybrid with a lithium-ion battery, can go 35 miles on electric power alone (after charging over night, for example), and GM brags on its website that if you limit your daily driving to that distance, you can "commute gas-free for an average of $1.50 a day." The Volt's price is listed at a very reasonable $33K (if you qualify for the maximum $7500 in tax credits). The fully electric Nissan Leaf is advertized for an even more reasonable $26K (with qualifying tax credits, naturally). What a deal—and it's good for you, too, the carmakers want you to know. As GM helpfully points out on its website, "Electricity is a cleaner source of power."
[Ed: Electricity, however, is primarily generated by burning coal. Electric cars only shift the emissions from car to power plant.]
Sweden is a model of sustainability innovation, while the US is the most voracious consumer on the planet. Based on Sweden's experience with green cars, it's daunting to imagine their possible impact here. Who can doubt that they'll likely inspire Americans to make longer commutes to work, live even further out in the exurbs, bringing development, blacktop and increased emissions with them?
In its current state, the green revolution is largely devoted to the effort to provide consumers with the products they have always loved, but now in affordable energy efficient versions. The thinking seems to be that through this gradual exchange, we can reduce our collective carbon footprint. Clearly, however, this approach is doomed if we don't reform our absurd consumption habits, which are so out-of-whack that they risk undoing any environmental gains we might make. Indeed, we are such ardent, addicted consumers that we take efficiency gains as license to consumer even more!
We need to address consumption fast because—news alert—the current consumer class on earth barely amounts to 1 billion people (if that), but 2 billion and counting eagerly wait in the wings.
American industry hungrily targets the rising Chinese consumer class. For the sake of the planet, we better hope it doesn't get its way. Consider: China currently has a car ownership rate approximately one-sixth that of the US. If China achieves car ownership rates comparable to the US, that would put an additional 800 million cars on the road. And that's just China. Even if we somehow succeeded in making China's fleet super efficient, it would still be more than the planet can handle.
Of course, cars are only the tip of the iceberg when it comes to Chinese consumer dreams. They will also want more electronics, clothes, meat, processed foods—bigger houses. In short, we can bet that the rising Chinese middle class will want something close to what we have. And why shouldn't they? We have been showcasing our middle class comfort worldwide for years through our vast media exports. Everyone is betting, hoping—assuming?—that technology will eventually help us deliver the American dream worldwide with no environmental impact. But clearly, we may run out of planet by the time that day comes. Even the American dream in an 'energy efficient format' is likely too much for the earth to handle.
If this is chilling—and it should be—you might wonder, what are our options? Justice demands that we cannot prevent, much less discourage the growing global consumer class from having the consumer goods we currently enjoy. Real change starts with us then, and I'm afraid to say, radical change is in order. We must figure out a way to consume less, which means driving less, shopping less, eating less meat (which the UN estimates is responsible for a fifth of all greenhouse gases), and conserving food and energy. This means essentially rethinking our suburban-sprawling, fast-food-gorging, shopaholic society. We must model for the world the changes we hope everyone will make to ensure a sustainable future.
It's time to be courageous and think big about altering our lifestyle, values and future. The powers that be are reluctant to rock the boat with consumers, and have decided that leaving consumption habits intact as much as possible is the preferable option. They'd rather get us into electric cars, rather than out of our cars altogether. Well, we need more than half measures at this point. As Sweden proves, unless other more fundamental changes are made to our engrained consumption habits, half measures only dig us deeper in the hole.
What if electric cars made pollution worse, not better? What if they increased greenhouse gas emissions instead of decreasing them? Preposterous you say? Well, consider what's happened in Sweden.
Through generous subsidies, Sweden aggressively pushed its citizens to trade in their cars for energy efficient replacements (hybrids, clean diesel vehicles, cars that run on ethanol). Sweden has been so successful in this initiative that it leads the world in per capita sales of 'green cars.' To everyone's surprise, however, greenhouse gas emissions from Sweden's transportation sector are up.
Or perhaps we should not be so surprised after all. What do you expect when you put people in cars they feel good about driving (or at least less guilty), which are also cheap to buy and run? Naturally, they drive them more. So much more, in fact, that they obliterate energy gains made by increased fuel efficiency.
We need to pay attention to this as GM and Nissan roll out their new green cars to great fanfare. The Chevy Volt, a hybrid with a lithium-ion battery, can go 35 miles on electric power alone (after charging over night, for example), and GM brags on its website that if you limit your daily driving to that distance, you can "commute gas-free for an average of $1.50 a day." The Volt's price is listed at a very reasonable $33K (if you qualify for the maximum $7500 in tax credits). The fully electric Nissan Leaf is advertized for an even more reasonable $26K (with qualifying tax credits, naturally). What a deal—and it's good for you, too, the carmakers want you to know. As GM helpfully points out on its website, "Electricity is a cleaner source of power."
[Ed: Electricity, however, is primarily generated by burning coal. Electric cars only shift the emissions from car to power plant.]
Sweden is a model of sustainability innovation, while the US is the most voracious consumer on the planet. Based on Sweden's experience with green cars, it's daunting to imagine their possible impact here. Who can doubt that they'll likely inspire Americans to make longer commutes to work, live even further out in the exurbs, bringing development, blacktop and increased emissions with them?
In its current state, the green revolution is largely devoted to the effort to provide consumers with the products they have always loved, but now in affordable energy efficient versions. The thinking seems to be that through this gradual exchange, we can reduce our collective carbon footprint. Clearly, however, this approach is doomed if we don't reform our absurd consumption habits, which are so out-of-whack that they risk undoing any environmental gains we might make. Indeed, we are such ardent, addicted consumers that we take efficiency gains as license to consumer even more!
We need to address consumption fast because—news alert—the current consumer class on earth barely amounts to 1 billion people (if that), but 2 billion and counting eagerly wait in the wings.
American industry hungrily targets the rising Chinese consumer class. For the sake of the planet, we better hope it doesn't get its way. Consider: China currently has a car ownership rate approximately one-sixth that of the US. If China achieves car ownership rates comparable to the US, that would put an additional 800 million cars on the road. And that's just China. Even if we somehow succeeded in making China's fleet super efficient, it would still be more than the planet can handle.
Of course, cars are only the tip of the iceberg when it comes to Chinese consumer dreams. They will also want more electronics, clothes, meat, processed foods—bigger houses. In short, we can bet that the rising Chinese middle class will want something close to what we have. And why shouldn't they? We have been showcasing our middle class comfort worldwide for years through our vast media exports. Everyone is betting, hoping—assuming?—that technology will eventually help us deliver the American dream worldwide with no environmental impact. But clearly, we may run out of planet by the time that day comes. Even the American dream in an 'energy efficient format' is likely too much for the earth to handle.
If this is chilling—and it should be—you might wonder, what are our options? Justice demands that we cannot prevent, much less discourage the growing global consumer class from having the consumer goods we currently enjoy. Real change starts with us then, and I'm afraid to say, radical change is in order. We must figure out a way to consume less, which means driving less, shopping less, eating less meat (which the UN estimates is responsible for a fifth of all greenhouse gases), and conserving food and energy. This means essentially rethinking our suburban-sprawling, fast-food-gorging, shopaholic society. We must model for the world the changes we hope everyone will make to ensure a sustainable future.
It's time to be courageous and think big about altering our lifestyle, values and future. The powers that be are reluctant to rock the boat with consumers, and have decided that leaving consumption habits intact as much as possible is the preferable option. They'd rather get us into electric cars, rather than out of our cars altogether. Well, we need more than half measures at this point. As Sweden proves, unless other more fundamental changes are made to our engrained consumption habits, half measures only dig us deeper in the hole.
Subscribe to:
Posts (Atom)