We are Occupy Memphis. We stand with the Occupy Wall Street Movement and all other nonviolent democratic uprisings around the world.
We are here to denounce the control of our government by the 1%. We the People have a right to govern ourselves; that right has been usurped by corporations, big banks, Wall Street, the Federal Reserve, and the wealthiest 1% of our population. These elites put profit over people, self-interest over justice, and oppression over equality.
They say we have a budget crisis, but what we have is a priority crisis. They say we have a fiscal deficit, but what we have is a deficit of democracy. They have taken our silence for consent, but no more.
We are seniors, teachers, small business owners, clergy, and union members. We are clerks, firefighters, nurses, police, and immigrants. We are service workers, veterans, entrepreneurs, students, the unemployed, and recipients of Social Security benefits.
We are mothers, fathers, children, grandparents, friends, and neighbors. We are those who do all the work and keep this society running. We are you and you are one of us. We are the 99%. We are here to peacefully Occupy Memphis until our demands are heard.
We demand that Wall Street be held accountable for its role in the destruction of the global financial system.
We demand that the 1% pay their fair share of taxes, that all tax loopholes benefiting the super-rich are closed, and that those who try to skirt our country’s tax laws are tried and prosecuted to the full extent of the law.
We demand that corporations not be afforded the same First Amendment rights as individuals; that corporations not be allowed to influence elections through campaign contributions.
We demand equal treatment from our justice system at all levels and at every stage, from investigations, through trials and sentencing, regardless of race or social class.
We demand that our government recognize health care as a basic human right. It is shameful that our city’s infant mortality rate is higher than in many developing countries.
We demand an end to Tennessee’s regressive labor laws, such as right-to-work and at-will employment, which keep us in poverty. We demand an ordinance mandating that no city services can be privatized; any outsourced services should be brought back in-house.
We demand affordable and fair housing for all and that Wells Fargo be held accountable for its racist, predatory lending practices in Memphis.
We demand that those Memphians who experienced foreclosures due to the illegal activities of banks and other financial institutions be adequately compensated and their debt forgiven.
We demand that the city use our money for education and public services rather than corporate incentives and tax freezes for companies like Bass Pro or Electrolux. Memphis gives away more public dollars in corporate welfare than any other city in the state, yet our unemployment rate is at 12.1%.
We demand a government of the people, by the people, and for the people. Our concerns will be addressed. Our demands will be met. We will not be discouraged. We will not be intimidated. We will not be ignored. We are the 99%.
“We must rapidly begin the shift from a thing-oriented society to a person-oriented society. When machines and computers, profit motives and property rights, are considered more important than people, the giant triplets of racism, extreme materialism, and militarism are incapable of being conquered.” —Martin Luther King, Jr
En Español: La Primera Declaración de la Ocupación de Memphis
November 18, 2011
November 14, 2011
Basic Steps of Election Reform
From rosenlake.net:
1) Direct election of the President
Democracy is based on the principle of one person, one vote. The electoral system, however, assigns electors to each state according to their total representation in Congress, in which every state has a number of representatives fairly reflective of its population but also -- no matter its size or population -- 2 senators. In large-population states such as California and Texas, the addition of 2 does not greatly affect the ratio of electors to voters. In low-population states, however, such as Wyoming and Vermont, the addition of 2 effectively triples that ratio. In other words, a Vermonter's vote for President is worth 3 times as much as a Texan's vote. Since the 17th amendment to the Constitution in 1913, U.S. Senators have been directly elected. The President ought to be as well.
Further, because most states assign all their electors to the winner of their popular vote, votes for the loser in that state end up counting as nothing. A Republican, for example, in a consistently Democratic state essentially never gets his or her vote counted for President. (And analysts wonder why turnout is so low.) Until the anachronistic electoral system is abolished, states ought to at least assign their electors in proportion to the popular vote, so the electoral result is a little more reflective of the popular result. Maine and Nebraska do so already.
2) Instant run-off voting
Voters should be comfortable voting according to their true opinion rather than having to strategize their vote. The resulting winner should reflect the general desire of the majority. If, for example, there are 1 "conservative" and 3 "liberal" candidates in an election, the majority may vote "liberal" yet the "conservative" may win -- even though the majority would prefer any of the "liberals." Instant run-off voting allows the voter to specify a 2nd and 3rd choice as well as the 1st choice. If the counting of 1st-choice votes does not produce a majority winner, then the lower-polling candidates are dropped and the 2nd-choice votes on those ballots counted, etc.
3) Proportional representation
With the current winner-takes-all system in most elections for representative bodies, it is typical that more than half of the voters are in fact not represented in government. (Yet, again, analysts wonder why participation is so low.) Representation ought to reflect the opinions of all voters. The Center for Voting and Democracy describes the many ways such "full" representation has been and can be implemented.
[Also see "Is Mandatory Voting a Good Idea?"]
1) Direct election of the President
Democracy is based on the principle of one person, one vote. The electoral system, however, assigns electors to each state according to their total representation in Congress, in which every state has a number of representatives fairly reflective of its population but also -- no matter its size or population -- 2 senators. In large-population states such as California and Texas, the addition of 2 does not greatly affect the ratio of electors to voters. In low-population states, however, such as Wyoming and Vermont, the addition of 2 effectively triples that ratio. In other words, a Vermonter's vote for President is worth 3 times as much as a Texan's vote. Since the 17th amendment to the Constitution in 1913, U.S. Senators have been directly elected. The President ought to be as well.
Further, because most states assign all their electors to the winner of their popular vote, votes for the loser in that state end up counting as nothing. A Republican, for example, in a consistently Democratic state essentially never gets his or her vote counted for President. (And analysts wonder why turnout is so low.) Until the anachronistic electoral system is abolished, states ought to at least assign their electors in proportion to the popular vote, so the electoral result is a little more reflective of the popular result. Maine and Nebraska do so already.
2) Instant run-off voting
Voters should be comfortable voting according to their true opinion rather than having to strategize their vote. The resulting winner should reflect the general desire of the majority. If, for example, there are 1 "conservative" and 3 "liberal" candidates in an election, the majority may vote "liberal" yet the "conservative" may win -- even though the majority would prefer any of the "liberals." Instant run-off voting allows the voter to specify a 2nd and 3rd choice as well as the 1st choice. If the counting of 1st-choice votes does not produce a majority winner, then the lower-polling candidates are dropped and the 2nd-choice votes on those ballots counted, etc.
3) Proportional representation
With the current winner-takes-all system in most elections for representative bodies, it is typical that more than half of the voters are in fact not represented in government. (Yet, again, analysts wonder why participation is so low.) Representation ought to reflect the opinions of all voters. The Center for Voting and Democracy describes the many ways such "full" representation has been and can be implemented.
[Also see "Is Mandatory Voting a Good Idea?"]
Is Mandatory Voting a Good Idea?
From Letters, November 13, 2011, The New York Times:
To the Editor:
William A. Galston (“Telling Americans to Vote, or Else,” Sunday Review, Nov. 6) might have it backward regarding the cause and effect between low voter turnout and political polarization.
Many countries have fiercely polarized politics along with high voter turnout. The difference that Mr. Galston missed is that the American system inevitably ensures both polarization and low participation.
Without a parliamentary system, our winner-take-all politics means that most votes are indeed meaningless. For most people, voting does not lead to a greater sense of participation in government, but rather reminds them — over and over — that their voices are not represented.
The problem is not voter turnout. It is a system of government that can never be responsive to the majority of its citizens.
ERIC ROSENBLOOM
Hartland, Vt., Nov. 6, 2011
[Note: Rob Richie, Executive Director of FairVote, notes that a parliamentary system, e.g., in Canada, can be based on winner-takes-all results and is therefore not necessarily proportional. The U.S system is both nonparliamentary and nonproportional.]
[See "Basic Steps of Election Reform"]
To the Editor:
William A. Galston (“Telling Americans to Vote, or Else,” Sunday Review, Nov. 6) might have it backward regarding the cause and effect between low voter turnout and political polarization.
Many countries have fiercely polarized politics along with high voter turnout. The difference that Mr. Galston missed is that the American system inevitably ensures both polarization and low participation.
Without a parliamentary system, our winner-take-all politics means that most votes are indeed meaningless. For most people, voting does not lead to a greater sense of participation in government, but rather reminds them — over and over — that their voices are not represented.
The problem is not voter turnout. It is a system of government that can never be responsive to the majority of its citizens.
ERIC ROSENBLOOM
Hartland, Vt., Nov. 6, 2011
[Note: Rob Richie, Executive Director of FairVote, notes that a parliamentary system, e.g., in Canada, can be based on winner-takes-all results and is therefore not necessarily proportional. The U.S system is both nonparliamentary and nonproportional.]
[See "Basic Steps of Election Reform"]
November 13, 2011
We Are The Many, by Makana
We occupy the courts
We occupy the offices of you
Till you do
The bidding of the many, not the few
1,027:1; and right-wing health care reform
The New York Times Magazine cover story today is about "how a single Israeli came to be worth 1,027 Palestinians". The use of the word "worth" is offensive enough. It echoes the usual Israeli/U.S. perspective and aggrandizes Israeli vanity, and it utterly misses the obvious reason such a swap is acceptable.
Gilad Shalit was a legitimately captured prisoner of war, his imprisonment a consequence of Israel's attack on Gaza starting in late December 2008 to kill well over 1,027 Palestinians, including hundreds of children. Almost all of the Palestinians in Israeli prisons are there for nothing. They are there for being Palestinian.
The more appropriate interpretation of the numerical disproportion of the prisoner swap is that it is the legitimacy of the imprisonment of so many Palestinians that is not worth that of this one Israeli soldier.
[[[[ ]]]]
Also in recent news, Obama's requirement to enrich private health insurers won another district court appeal and may soon be going to the supreme court. One story today echoes the usual reporting, noting that the latest, like many others, judge to support Obama's law is "conservative".
The implication is that this is a sign of reason, based on the assumption that Obama's law is "liberal". In the same vein, liberal supporters of Obama's reforms to enrich private health insurers have crowed over these court wins. For example, Think Progress tweeted: "FACT: The right-wing legal argument against health care reform is so weak they couldn't convince a very conservative Reagan appointee."
REALITY: Obamacare is not health care reform. It is a pathetically modest set of new regulations for private insurers in return for making it illegal not to buy private insurance. It is in fact a very right-wing, even fascist, law: Enrich private insurers or go to jail.
Gilad Shalit was a legitimately captured prisoner of war, his imprisonment a consequence of Israel's attack on Gaza starting in late December 2008 to kill well over 1,027 Palestinians, including hundreds of children. Almost all of the Palestinians in Israeli prisons are there for nothing. They are there for being Palestinian.
The more appropriate interpretation of the numerical disproportion of the prisoner swap is that it is the legitimacy of the imprisonment of so many Palestinians that is not worth that of this one Israeli soldier.
Also in recent news, Obama's requirement to enrich private health insurers won another district court appeal and may soon be going to the supreme court. One story today echoes the usual reporting, noting that the latest, like many others, judge to support Obama's law is "conservative".
The implication is that this is a sign of reason, based on the assumption that Obama's law is "liberal". In the same vein, liberal supporters of Obama's reforms to enrich private health insurers have crowed over these court wins. For example, Think Progress tweeted: "FACT: The right-wing legal argument against health care reform is so weak they couldn't convince a very conservative Reagan appointee."
REALITY: Obamacare is not health care reform. It is a pathetically modest set of new regulations for private insurers in return for making it illegal not to buy private insurance. It is in fact a very right-wing, even fascist, law: Enrich private insurers or go to jail.
November 6, 2011
This Is Green Energy?
Blasting and clearing of the Lowell Mountain Ridge in Vermont for wind turbine erections by Green Mountain Power (Gaz Metro) and Kingdom Community Wind.
Also read (here) about Senator Bernie Sanders' angry defense of corporate destruction of Vermont's ridgeline ecosystems to "save the world".
wind power, wind energy, wind turbines, wind farms, environment, environmentalism, human rights, animal rights, Vermont
Also read (here) about Senator Bernie Sanders' angry defense of corporate destruction of Vermont's ridgeline ecosystems to "save the world".
wind power, wind energy, wind turbines, wind farms, environment, environmentalism, human rights, animal rights, Vermont
October 30, 2011
Transition without Change: A Failing Discourse
Governance “by the people” consists of authorizing qualified experts to assist political leaders in finding the efficient, modern solution. In the narratives of both conventional and sustainable energy, citizens are empowered to consume the products of the energy regime while largely divesting themselves of authority to govern its operations.
· · · · · · ... an orgy of uncontrolled production and equally uncontrolled reproduction: machine fodder and cannon fodder: surplus values and surplus populations ...
· · · · · · Differences in ecological commitments between conventional and sustainable energy strategies still demarcate a battleground that, we agree, is important — even fundamental. But so also are the common aspirations of the two camps. Each sublimates social considerations in favor of a politics of more-is-better, and each regards the advance of energy capitalism with a sense of inevitability and triumph. ... If the above assessment of the contemporary energy discourse is correct, then the enterprise is not at a crossroad; rather, it has reached a point of acquiescence to things as they are.
[[[[ ]]]]
Also see: "Relocating Energy in the Social Commons: Ideas for a Sustainable Energy Utility", by John Byrne, Cecilia Martinez, and Colin Ruggero, Bulletin of Science, Technology & Society, April 2009, 29 (2), pp. 81-94:
Abstract: Climate change, rising energy costs, and other dilemmas raise the prospect for major change in energy-ecology-society relations. Two prominent proposals for change include: a nuclear power renaissance; and mega-scale renewable energy development. Both suggest that modern society will receive a rising stream of less CO2-rich kilowatt-hours, so that increased energy consumption and economic growth can continue. The article doubts these CO2 claims and finds both options lead to deepening unsustainability and environmental injustice. A third approach is proposed. A new institutional and community strategy called a Sustainability Energy Utility. The SEU looks to reduce energy use and seeks to support remaining energy needs by community-scale renewables. To accomplish deep energy change, the authors show how an SEU can move society from an energy commodity to energy commons regime. Commonwealth economy and community trusts are key means to significant change: a future commons is offered as the more appropriate strategy.
[[[[ ]]]]
Energy as a Social Project: Recovering a Discourse
by John Byrne and Noah Toly
(in Transforming Power: Energy, Environment, and Society in Conflict (ch. 1), 2006, Transaction)
[click here to download PDF (complete, with notes and references)]
From climate change to acid rain, contaminated landscapes, mercury pollution, and biodiversity loss, the origins of many of our least tractable environmental problems can be traced to the operations of the modern energy system. A scan of nightfall across the planet reveals a social dilemma that also accompanies this system’s operations: invented over a century ago, electric light remains an experience only for the socially privileged. Two billion human beings — almost one-third of the planet’s population — experience evening light by candle, oil lamp, or open fire, reminding us that energy modernization has left intact — and sometimes exacerbated — social inequalities that its architects promised would be banished (Smil, 2003: 370-373). And there is the disturbing link between modern energy and war. Whether as a mineral whose control is fought over by the powerful (for a recent history of conflict over oil, see Klare, 2002b, 2004, 2006), or as the enablement of an atomic war of extinction, modern energy makes modern life possible and threatens its future.
With environmental crisis, social inequality, and military conflict among the significant problems of contemporary energy-society relations, the importance of a social analysis of the modern energy system appears easy to establish. One might, therefore, expect a lively and fulsome debate of the sector’s performance, including critical inquiries into the politics, sociology, and political economy of modern energy. Yet, contemporary discourse on the subject is disappointing: instead of a social analysis of energy regimes, the field seems to be a captive of euphoric technological visions and associated studies of “energy futures” that imagine the pleasing consequences of new energy sources and devices.
One stream of euphoria has sprung from advocates of conventional energy, perhaps best represented by the unflappable optimists of nuclear power who, early on, promised to invent a “magical fire” (Weinberg, 1972) capable of meeting any level of energy demand inexhaustibly in a manner “too cheap to meter” (Lewis Strauss, cited in the New York Times 1954, 1955). In reply to those who fear catastrophic accidents from the “magical fire” or the proliferation of nuclear weapons, a new promise is made to realize “inherently safe reactors” (Weinberg, 1985) that risk neither serious accident nor intentionally harmful use of high-energy physics. Less grandiose, but no less optimistic, forecasts can be heard from fossil fuel enthusiasts who, likewise, project more energy, at lower cost, and with little ecological harm (see, e.g., Yergin and Stoppard, 2003).
Skeptics of conventional energy, eschewing involvement with dangerously scaled technologies and their ecological consequences, find solace in “sustainable energy alternatives” that constitute a second euphoric stream. Preferring to redirect attention to smaller, and supposedly more democratic, options, “green” energy advocates conceive devices and systems that prefigure a revival of human scale development, local self-determination, and a commitment to ecological balance. Among supporters are those who believe that greening the energy system embodies universal social ideals and, as a result, can overcome current conflicts between energy “haves” and “have-nots.” In a recent contribution to this perspective, Vaitheeswaran suggests (2003: 327, 291), “today’s nascent energy revolution will truly deliver power to the people” as “micropower meets village power.” Hermann Scheer echoes the idea of an alternative energy-led social transformation: the shift to a “solar global economy ... can satisfy the material needs of all mankind and grant us the freedom to guarantee truly universal and equal human rights and to safeguard the world’s cultural diversity” (Scheer, 2002: 34).
The euphoria of contemporary energy studies is noteworthy for its historical consistency with a nearly unbroken social narrative of wonderment extending from the advent of steam power through the spread of electricity (Nye, 1999). The modern energy regime that now powers nuclear weaponry and risks disruption of the planet’s climate is a product of promises pursued without sustained public examination of the political, social, economic, and ecological record of the regime’s operations. However, the discursive landscape has occasionally included thoughtful exploration of the broader contours of energy-environment-society relations.
As early as 1934, Lewis Mumford (see also his two-volume Myth of the Machine, 1966; 1970) critiqued the industrial energy system for being a key source of social and ecological alienation (1934: 196):
The premises of the current energy paradigms are in need of critical study in the manner of Mumford’s work if a world measurably different from the present order is to be organized. Interrogating modern energy assumptions, this chapter examines the social projects of both conventional and sustainable energy as a beginning effort in this direction. The critique explores the neglected issue of the political economy of energy, underscores the pattern of democratic failure in the evolution of modern energy, and considers the discursive continuities between the premises of conventional and sustainable energy futures.
The Abundant Energy Machine
Proposals by its stakeholders to fix the modern energy system abound. Advocates envision bigger, more expensive, and more complex machines to spur and sate an endlessly increasing world energy demand. From clean coal to a revived nuclear energy strategy, such developments promise a worldwide movement to a cleaner and more socially benign energy regime that retains its modern ambitions of bigger, more, and better. Proponents even suggest that we might have our cake and eat it too, promoting patterns of energy production, distribution, and consumption consistent with an unconstrained ideology of quantification while also banishing environmental threats and taming social risks that energy critics cite in their challenges to the mainstream. Consistent with a program of ecological modernization, the conventional energy regime’s architects are now exploring new technologies and strategies that offer what are regarded as permanent solutions to our energy troubles without harming our ecological future or disturbing the goal of endless economic growth and its attendant social relations.
Greening Fossil Fuels
Among the most prominent techno-fixes for modern energy are those seeking to “green” the fossil fuels (see e.g., Jaccand, 2005). The substitution of natural gas for other hydrocarbons, the emergence of “clean coal,” the “ecologically sustainable” mining of what are supposed to be vast, untapped oil reserves in heretofore unfriendly terrains, and the geological sequestration of climate-destabilizing CO₂ emissions are among the most favored in this category. Each represents an effort to legitimate the conventional energy regime without displacing fossil fuel’s powerful role in rationalizing centralized energy production and distribution. ...
Importantly, the higher and higher financial costs of propping up the fossil fuel regime never seem to doom such thinking. Why is it that a commitment to fossil energy enlarges as the crises it causes deepen? In a recent book, Huber and Mills (2005: 165, emphasis added) suggest that “energy is the key to survival and prosperity” and that the only solution to today’s energy problems is increased consumption aided by tomorrow’s technical developments. They argue that (2005: xxiii, xxvi) “energy begets more energy; tomorrow’s supply is determined by today’s consumption. The more energy we seize and use, the more adept we become at finding and seizing still more. ... Energy isn’t the problem. Energy is the solution.” Huber and Mills also highlight the synergistic relationship between modern energy, modern technology, and the pursuit of “more” (2005: 155, emphasis added): “We will never stop wanting more logic, more memory, more vision, more range — all of which depend upon high grade energy — because we are built to want more of these things, an unlimited more.”
Describing the ideal energy regime as a “perpetual motion machine” (2005: 4), Huber and Mills suggest that energy consumption spurs technical developments that permit the extraction and consumption of even greater quantities of energy in more usable forms despite, or even because of, increased waste. Emerging technologies, suggest Huber and Mills, are (2005: 43):
Remaining modern, however, also demands an increasing commitment to override what lags behind from a modernist point of view. The bottomless wells to which Huber and Mills refer are increasingly found among the most vulnerable ecologies and communities, and their sacrifice to deliver more energy also involves the geological-scale refinement of physical formations, biological-scale modification of evolution, and historical-scale alteration of social relations. A recent advertisement by Occidental Petroleum blends modernist ideology with the hubris of modern management as “Oxy brings energy to energy solutions” (Occidental Petroleum Corporation, 2005):
In addition to a disregard for cultural continuity in traditional and indigenous communities, extending the capacity to exploit fossil fuels through modernization of the conventional energy regime carries an additional requirement. As Michael Klare (2004, 2006) indicates, continued dependence upon oil, coupled with diminishing supplies and increasing demand, is likely to mean increased global conflict. The same can be said of natural gas (Klare, 2002b: 81-108). An industrialized world moored to the conventional energy regime will, in all likelihood, force further needs to militarize its operations.
Giant Power Revivalism
Life extension projects for the conventional energy regime are not limited to technological “greening” of fossil fuels. Plans also include a revival of “Giant Power” strategies, which had happened upon hard times by the 1980s. Gifford Pinchot, a two-term governor of Pennsylvania (1922-1926 and 1930-1934) is credited with coining the term in a speech, proclaiming:
Mega-dams, such as the Glen Canyon, lost social support in the United States in the 1970s as ecological impacts and financial risks slowed interest. But many countries have shown a resurgent interest in large dams as an energy strategy. Canada has committed to building what will be one of the largest dams in the world — Syncrude Tailings — which will have the largest water impoundment volume in the world at 540 million cubic meters (Bureau of Reclamation (U.S.), 2005b). And China, with more than 20,000 dams of more than fifteen meters in height is constructing what will be the largest hydroelectric facility in the world on Earth’s third largest river. The Three Gorges Dam, on the Yangtze, at a “mere” 575 feet tall — sixty-first tallest in the world — will have a generating capacity of more than 18,000 MW, roughly equivalent to 10 percent of China’s electricity demand. This will require twenty-six hydro turbines, purchased from ABB, Alstom, GE, Kvaerner, Siemens, and Voith, highlighting the synergies between global corporatism and Giant Power (Power Technology, 2005).
Large-scale hydropower represents an attempt at a techno-fix of the democratic-authoritarian variety. Without disrupting the conventional energy regime’s paradigm of centralized generation and distribution, large dams purport to deliver environmentally benign and socially beneficial electricity in amounts that reinforce the giant character of the existing dams. In fact, both ecologically and socially disruptive, large dams represent continued commitment to the promises, prospects, and perils of the conventional energy regime and its social project (McCully, 2001: 265; Hoffman, 2002; Totten, Pandya, and Janson-Smith, 2003; Agbemabiese and Byrne, 2005; Bosshard, 2006).
A second mega-energy idea has been advanced since the 1950s — the nuclear energy project. Born at a time in U.S. history when there were no pressing supply problems, nuclear power’s advocates promised an inexhaustible source of Giant Power. Along with hydropower, nuclear energy has been conceived as a non-fossil technical fix for the conventional energy regime.
But nuclear energy has proven to be among the most potent examples of technological authoritarianism (Byrne and Hoffman, 1988, 1992, 1996) inherent in the techno-fixes of the conventional energy regime. On April 26, 1986, nuclear dreams were interrupted by a hard dose of reality — the accident at Chernobyl’s No. 4 Reactor, with a radioactive release more than ten times that of the atomic bomb dropped on Hiroshima (Medvedev, 1992). Both human and non-human impacts of this greatest of technological disasters have been well-documented (Medvedev, 1992). The Chernobyl explosion and numerous near-accidents, other technical failures, and extraordinary cost-overruns caused interest in nuclear energy to wane during the 1980s and 1990s.
Notwithstanding a crippling past, the nuclear lobby has engineered a resurgence of interest through a raft of technological fixes that purport to prevent future calamitous failures while capitalizing on the supposed environmentally sound qualities of nuclear power. Huber and Mills, for example, title one of their chapters “Saving the Planet with Coal and Uranium” (2005: 156-171). A spokesperson for the Electric Power Research Institute has recently suggested that new pebble-bed modular reactors are “walk-away safe — if something goes wrong, the operators can go out for coffee while they figure out what to do” (quoted in Silberman, 2001). Such claims are eerily reminiscent of pre-Chernobyl comparisons between the safety of nuclear power plants and that of chocolate factories (The Economist, 1986). Huber and Mills go even further, claiming nuclear power will exceed the original source of solar power — the sun (2005: 180): “Our two-century march from coal to steam engine to electricity to laser will ... culminate in a nuclear furnace that burns the same fuel, and shines as bright as the sun itself. And then we will invent something else that burns even brighter.”
Critics, however, note that even if such technical advances can provide for accident-free generation of electricity, there are significant remaining social implications of nuclear power, including its potential for terrorist exploitation and the troubling history of connections between military and civilian uses of the technology (Bergeron, 2002; Bergeron and Zimmerman, 2006). As well, the life-cycle of nuclear energy development produces risks that continuously challenge its social viability. To realize a nuclear energy-based future, massive amounts of uranium must be extracted. This effort would ineluctably jeopardize vulnerable communities since a considerable amount of uranium is found on indigenous lands. For example, Australia has large seams of uranium, producing nearly one-quarter of the world’s supply, with many mines located on Aboriginal lands (Uranium Information Center, 2005). Even after the uranium is secured and electricity is generated, the project’s adverse social impacts continue. Wastes with half-lives of lethal threat to any form of life in the range of 100,000 to 200,000 years have to be buried and completely mistake-free management regimes need to be operated for this length of time — longer than human existence, itself. Epochal imagination of this kind may be regarded by technologists as reasonable, but the sanity of such a proposal on social grounds is surely suspect (Byrne and Hoffman, 1996).
Immaterial Techniques
Repair of the existing regime is not limited to efforts to secure increasing conventional supplies. Also popular are immaterial techniques emerging from the field of economics and elsewhere that offer policy reforms as the means to overcome current problems. Electricity liberalization exemplifies this approach. Here, inefficiencies in the generation and distribution of electricity in the conventional energy regime are targeted for remedy by the substitution of market dynamics for regulatory logic. Purported inefficiencies are identified, in large part, as the result of regulations that have distorted market prices either by subsidizing unjustifiable investments or by guaranteeing rates of return for compliant energy companies. Proponents of liberalization promise greater and more reliable energy supplies with the removal of regulation-induced market distortions (Pollitt, 1995; World Bank, 1993, 2003, 2004a).
Environmental concerns with the prevailing energy order can also be used to support liberalized market strategies. For example, while Huber and Mills (2005: 157) suggest that increased use of hydrocarbons is actually the preferred solution to the problem of climate change, arguing that, “for the foreseeable future, the best (and only practical) policy for limiting the buildup of carbon dioxide in the air is to burn more hydrocarbons — not fewer,” others suggest the superiority of immaterial techniques such as the commercialization of the atmospheric commons. Thus, David Victor (2005) attributes the collapse of the Kyoto Protocol to a failure to embrace the economic superiority of emissions trading and other market-oriented mechanisms and calls for conventional energy’s collision with climate to be addressed by a healthy dose of competitive marketing of carbon-reducing options. The outcome of a trading regime to reduce carbon will almost certainly be life-extensions for the fossil fuels and nuclear energy since it would ‘offset’ the carbon problems of the former and embrace the idea of the cost-effectiveness of the latter to avoid carbon emissions. ...
Conventional techno-fixes to increase energy supplies cannot remove risks, nor can market economics, but together they seek to convince society that abandonment of the modern energy project is nonetheless unwarranted. ...
The Sustainable Energy Quest
The problems of the conventional energy order have led some to regard reinforcement of the status quo as folly and to instead champion sustainable energy strategies based upon non-conventional sources and a more intelligent ideology of managed relations between energy, environment, and society consonant with environmental integrity. This regime challenger seeks to evolve in the social context that produced the conventional energy regime, yet proposes to fundamentally change its relationship to the environment (at least, this is the hope). Technologies such as wind and photovoltaic electricity are purported to offer building blocks for a transition to a future in which ills plaguing modernity and unsolved by the conventional energy regime can be overcome (Lovins, 1979; Hawken et al., 2000; Scheer, 2002; Rifkin, 2003; World Bank, 2004b).
While technical developments always include social, material, ecological, intellectual, and moral infrastructures (Winner, 1977: 54-58; Toly, 2005), and may, therefore, be key to promoting fundamentally different development pathways, it is also possible that technologies, even environmentally benign ones, will be appropriated by social forces that predate them and, thereby, can be thwarted in the fulfillment of social promises attached to the strategy. Indeed, if unaccompanied by reflection upon the social conditions in which the current energy regime thrives, the transition to a renewable energy regime may usher in very few social benefits and little, if any, political and economic transformation. This is the concern that guides our analysis (below) of the sustainable energy movement.
At least since the 1970s when Amory Lovins (1979) famously posed the choice between “hard” and “soft” energy paths, sustainable energy strategies have been offered to challenge the prevailing regime. ... Partly, early criticisms of the mainstream were reflective of a broader social agenda that drew upon, among other things, the anti-war and anti-corporate politics of the 1960s. It was easy, for example, to connect the modern energy regime to military conflicts of the period and to superpower politics; and it was even easier to ally the mainstream’s promotion of nuclear power to the objectives of the Nuclear Club. With evidence of profiteering by the oil majors in the wake of the 1973-1974 OPEC embargo, connecting the energy regime with the expanding power of multinational capital was, likewise, not difficult. Early sustainable energy strategies opposed these alliances, offering promises of significant political, as well as technological, change.
However, in the thirty years that the sustainable energy movement has aspired to change the conventional regime, its social commitments and politics have become muddled. A telling sign of this circumstance is the shifted focus from energy politics to economics. To illustrate, in the celebrated work of one of the movement’s early architects, subtitles to volumes included “breaking the nuclear link” (Amory Lovins’ Energy/War, 1981) and “toward a durable peace” (Lovins’ Soft Energy Paths, 1979). These publications offered poignant challenges to the modern order and energy’s role in maintaining that order.
Today, however, the bestsellers of the movement chart a course toward “natural capitalism” (Hawken et al., 2000), a strategy that anticipates synergies between soft path technologies and market governance of energy-environment-society relations. Indeed, a major sustainable energy think tank has reached the conclusion that “small is profitable” (Lovins et al., 2002) in energy matters and argues that the soft path is consistent with “economic rationalism.” Understandably, a movement that sought basic change for a third of a century has found the need to adapt its arguments and strategies to the realities of political and economic power. Without adaptation, the conventional energy regime could have ignored soft path policy interventions like demand-side management, integrated resource planning, public benefits charges, and renewable energy portfolio standards (see Lovins and Gadgil, 1991; Sawin, 2004), all of which have caused an undeniable degree of decentralization in energy-society relations. In this vein, it is clear that sustainability proponents must find ways to speak the language and communicate in the logic of economic rationalism if they are to avoid being dismissed. We do not fault the sustainable energy camp for being strategic. Rather, the concern is whether victories in the everyday of incremental politics have been balanced by attention to the broader agenda of systemic change and the ideas needed to define new directions.
A measure of the sustainable energy initiative’s strategic success is the growing acceptance of its vision by past adversaries. Thus, Small is Profitable was named ‘Book of the Year’ in 2002 by The Economist, an award unlikely to have been bestowed upon any of Lovins’ earlier works. As acceptance has been won, it is clear that sustainable energy advocates remain suspicious of the oil majors, coal interests, and the Nuclear Club. But an earlier grounding of these suspicions in anti-war and anti-corporate politics appears to have been superseded by one that believes the global economy can serve a sustainability interest if the ‘raison de market’ wins the energy policy debate. Thus, it has been suggested that society can turn “more profit with less carbon,” by “harnessing corporate power to heal the planet” (Lovins, 2005; L. H. Lovins and A. B. Lovins, 2000). Similarly, Hermann Scheer (2002: 323) avers: “The fundamental problem with today’s global economy is not globalization per se, but that this globalization is not based on the sun — the only global force that is equally available to all and whose bounty is so great that it need never be fully tapped.” However, it is not obvious that market economics and globalization can be counted upon to deliver the soft path (see e.g. Nakajima and Vandenberg, 2005). More problematic, as discussed below, the emerging soft path may fall well short of a socially or ecologically transforming event if strategic victories and rhetorics that celebrate them overshadow systemic critiques of energy-society relations and the corresponding need to align the sustainable energy initiative with social movements to address a comprehensive agenda of change.
Catching the Wind
To date, the greatest success in ‘real’ green energy development is the spread of wind power. From a miniscule 1,930 MW in 1990 to more than 47,317 MW in 2005, wind power has come of age. Especially noteworthy is the rapid growth of wind power in Denmark (35 percent per year since 1997), Spain (30 percent per year since 1997), and Germany (an astonishing 68 percent per year since 2000), where policies have caused this source to threaten the hegemony of fossil fuels and nuclear energy. Wind now generates more than 20 percent of Denmark’s electricity and the country is the world leader in turbine manufacture. And as the Danes have demonstrated, offshore wind has the potential to skirt some of the land-use conflicts that have sometimes beset renewable energy alternatives. Indeed, some claim that offshore wind alone might produce all of Europe’s residential electricity (Brown, 2004). National energy strategists and environmental movements in and beyond Europe have recognized the achievements of the Danes, Spaniards, and Germans with initiatives designed to imitate their success.
What are the characteristics of this success? One envied feature is the remarkable decline in the price of wind-generated electricity, from $0.46 per kWh in 1980 to $0.03 to $0.07 per kWh today (Sawin, 2004), very close to conventionally-fueled utility generating costs in many countries, even before environmental impacts are included. Jubilant over wind’s winning market performance, advocates of sustainable energy foresee a new era that is ecologically much greener and, yet, in which electricity remains (comparatively) cheap. Lester Brown (2003: 159) notes that wind satisfies seemingly equally weighted criteria of environmental benefit, social gain, and economic efficiency:
It is also consistent with the ideology of modern consumerism. Its politics bestow sovereignty on consumers not unlike the formula of Pareto optimality, a situation in which additional consumption of a good or service is warranted until it cannot improve the circumstance of one person (or group) without decreasing the welfare of another person (or group). How would one know “better off” from “worse off” in the wind-rich sustainable energy era? Interestingly, proponents seem to apply a logic that leaves valuation of “better” and “worse” devoid of explicit content. ... Sustainable energy in this construct cooperates in the abstraction of consumption and production. Consumption-of-what, -by-whom, and -for-what-purpose, and, relatedly, production-of-what, -by-whom, and -for-what-purpose are not issues. The construct altogether ignores the possibility that “more-is-better” consumption-production relations may actually reinforce middle class ideology and capitalist political economy, as well as contribute to environmental crises such as climate change. In the celebration of its coming market victory, the cheap-and-green wind version of sustainable energy development may not readily distinguish the economic/class underpinnings of its victory from those of the conventional energy regime.
Wind enthusiasts also appear to be largely untroubled by trends toward larger and larger turbines and farms, the necessity of more exotic materials to achieve results, and the advancing complications of catching the wind. There is nothing new about these sorts of trends in the modern period. The trajectory of change in a myriad of human activities follows this pattern. Nor is a critique per se intended in an observation of this trend. Rather, the question we wish to raise is whether another feature in this pattern will likewise be replicated — namely, a “technological mystique” (Bazin, 1986) in which social life finds its inspiration and hope in technical acumen and searches for fulfillment in the ideals of technique (Mumford, 1934; Ellul, 1964; Marcuse, 1964; Winner, 1977, 1986; Vanderburg, 2005).
This prospect is not a distant one, as a popular magazine recently illustrated. In a special section devoted to thinking “After Oil,” National Geographic approvingly compared the latest wind technology to a well-known monument, the Statue of Liberty, and noted that the new machines tower more than 400 feet above this symbol (Parfit, 2005: 15-16). It was not hard to extrapolate from the story the message of Big Wind’s liberatory potential. Popular Science also commended new wind systems as technological marvels, repeating the theme that, with its elevation in height and complexity lending the technology greater status, wind can now be taken seriously by scientists and engineers (Tompkins, 2005). A recent issue of The Economist (2005) included an article on the wonder of electricity generated by an artificial tornado in which wind is technologically spun to high velocities in a building equipped with a giant turbine to convert the energy into electricity. Indeed, wind is being contemplated as a rival able to serve society by the sheer technical prowess that has often been a defining characteristic of modern energy systems.
... Big Wind appears to seek monumental status in the psyche of ecologically modern society. A recent alliance of the American Wind Energy Association and the U.S. electric utility industry to champion national (subsidized) investment in higher voltage transmission lines (to deliver green-and-cheap electricity), illustrates the desire of Big Wind to plug into Giant Power’s hardware and, correspondingly, its ideology (see American Wind Energy Association, 2005, supporting “Transmission Infrastructure Modernization”). The transformative features of such a politics are unclear. Indeed, wind power — if it can continue to be harvested by ever-larger machines — may penetrate the conventional energy order so successfully that it will diffuse, without perceptible disruption, to the regime. The air will be cleaner but the source of this achievement will be duly noted: science will have triumphed still again in wresting from stingy nature the resources that a wealthy life has grown to expect. Social transformation to achieve sustainability may actually be unnecessary by this political view of things, as middle-class existence is assured via clean, low-cost and easy-to-plug-in wind power.
Small-is-Beautiful Solar
The second fastest growing renewable energy option — solar electric power — is proving more difficult to plug in. Despite steady declines in the cost per kWh of energy generated by photovoltaic (PV) cells, this alternative remains a pricey solution by conventional standards. Moreover, the technology does not appear to have significant scale economies, partly because the efficiency of PV cannot be improved by increasing the size of the device or its application. That is, unit energy costs of large installations of many PV arrays do not deviate appreciably from those for small installations comprised of fewer arrays. Instead, the technology seems to follow a modular economic logic in which unit costs neither grow nor decline with scale. Some have praised this attribute, suggesting that PV’s modularity means there are no technical or economic reasons for scaling its application to iconic levels that conventional power plants now represent, potentiating a more robust system of distributed generation and delivering clean energy to previously marginalized populations (Martinot and Reiche, 2000; Martinot et al., 2002). ...
Perhaps because PV has, so far, found wider social usage in rural contexts where poverty (as modernly conceived) persists, discussions, in fact, crop up about solar’s social project. For example, arguments have formed around the gender interests of PV, at least as it has been diffused in rural life to date (see, for example, Allerdice and Rogers, 2000). And criticism has surfaced about PV’s ‘capture’ by the state as a tool to quiet, if not mollify, the rural poor (Okubo, 2005: 49-58). There has even been a charge that PV and other renewables are being used by multilateral organizations such as the World Bank to stall Southern development. By imposing a fragmented patchwork of tiny, expensive solar generators on, for example, the African rural landscape, instead of accumulating capital in an industrial energy infrastructure, the World Bank and other actors are accused of being unresponsive to the rapid growth needs of the South (Davidson and Sokona, 2002; Karekezi and Kithyoma, 2002). A related challenge of PV’s class interests has raised questions about the technology’s multinational corporate owners and offered doubts about successful indigenization of solar cell manufacturing (Able-Thomas, 1995; Guru, 2002: 27; Bio-Energy Association of Sri Lanka, 2004: 20). Regardless of one’s position on these debates, it is refreshing to at least see solar energy’s possible political and economic interests considered.
But PV’s advocates have not embraced the opportunities created by its rural examiners to seriously investigate the political economy of solar energy. The bulk of solar research addresses engineering problems, with a modest social inquiry focused on issues of technological transition in which solar electricity applications are to find their way into use with as little social resistance or challenge as possible. A green politics that is largely unscarred by conflict is, and for a long time has been, anticipated to characterize an emergent Solar Society (Henderson, 1988; Ikeda and Henderson, 2004). Likewise, solar economics is thought to be consensual as non-renewable options become too expensive and PV cells, by comparison, too cheap to be refused their logical role (see, for example, Henderson, 1995, 1996; Rifkin, 2003). It seems that a solarized social order is inevitable for its proponents, with technological breakthrough and economic cost the principal determinants of when it will arrive.
In this regard, ironically, Small-is-Beautiful Solar shares with Big Wind the aspiration to re-order the energy regime without changing society. Despite modern society’s technological, economic, and political addiction to large-scale, cheap energy systems that solar energy cannot mimic, most PV proponents hope to revolutionize the technological foundation of modernity, without disturbing its social base. A new professional cadre of solar architects and engineers are exhorted to find innovative ways of embedding PV technology in the skin of buildings (Strong, 1999; Benemann, Chehab, and Schaar-Gabriel, 2001), while transportation engineers and urban planners are to coordinate in launching “smart growth” communities where vehicles are powered by hydrogen derived from PV-powered electrolysis to move about in communities optimized for “location efficiency” (Ogden, 1999; Holtzclaw et al., 2002). The wildly oversized ecological footprint of urban societies (Rees and Wackernagel, 1996) is unquestioned as PV decorates its structure.
These tools for erecting a Solar Society intend to halt anthropogenic changes to the chemistry of the atmosphere, rain, and soil mantle while enabling unlimited economic growth. In the Solar Society of tomorrow, we will make what we want, in the amounts we desire, without worry, because all of its energy is derived from the benign, renewable radiation supplied by our galaxy’s sun. Compared to Big Wind, PV may cost more but it promises to deliver an equivalent social result (minus the avian and landscape threats of the former) and, just possibly, with a technical elegance that surpasses the clunky mechanicalness of turbines propelled by wind. In this respect, Solar Society makes its peace with modernity by leaving undisturbed the latter’s cornucopian dreams and, likewise, poses no serious challenge to the social and political structures of the modern era. ...
While the discussion here of sustainable energy advocacy has concentrated on its wind- and solar-animated versions, we believe that strategies anticipating significant roles for geothermal, biomass, micro-hydro, and hydrogen harvested from factories fueled by renewables anticipate variants of the social narratives depicted for the two currently most prominent renewable energy options. The aim of producing more with advancing ecological efficiency in order to consume more with equally advancing consumerist satisfaction underpins the sustainable energy future in a way that would seamlessly tie it to the modernization project.
Democratic Authoritarian Impulses and Uncritical Capitalist Assumptions
When measured in social and political-economic terms, the current energy discourse appears impoverished. Many of its leading voices proclaim great things will issue from the adoption of their strategies (conventional or sustainable), yet inquiry into the social and political-economic interests that power promises of greatness by either camp is mostly absent. In reply, some participants may petition for a progressive middle ground, acknowledging that energy regimes are only part of larger institutional formations that organize political and economic power. It is true that the political economy of energy is only a component of systemic power in the modern order, but it hardly follows that pragmatism toward energy policy and politics is the reasonable social response. Advocates of energy strategies associate their contributions with distinct pathways of social development and define the choice of energy strategy as central to the types of future(s) that can unfold. Therefore, acceptance of appeals for pragmatist assessments of energy proposals, that hardly envision incremental consequences, would indulge a form of self-deception rather than represent a serious discursive position.
An extensive social analysis of energy regimes of the type that Mumford (1934; 1966; 1970), Nye (1999), and others have envisioned is overdue. The preceding examinations of the two strategies potentiate conclusions about both the governance ideology and the political economy of modernist energy transitions that, by design, leave modernism undisturbed (except, perhaps, for its environmental performance).
The Technique of Modern Energy Governance
While moderns usually declare strong preferences for democratic governance, their preoccupation with technique and efficiency may preclude the achievement of such ambitions, or require changes in the meaning of democracy that are so extensive as to raise doubts about its coherence. A veneration of technical monuments typifies both conventional and sustainable energy strategies and reflects a shared belief in technological advance as commensurate with, and even a cause of, contemporary social progress. The modern proclivity to search for human destiny in the march of scientific discovery has led some to warn of a technological politics (Ellul, 1997a, 1997b, 1997c; Winner, 1977, 1986) in which social values are sublimated by the objective norms of technical success (e.g., the celebration of efficiency in all things). In this politics, technology and its use become the end of society and members have the responsibility, as rational beings, to learn from the technical milieu what should be valorized. An encroaching autonomy of technique (Ellul, 1964: 133-146) replaces critical thinking about modern life with an awed sense and acceptance of its inevitable reality.
From dreams of endless energy provided by Green Fossil Fuels and Giant Power, to the utopian promises of Big Wind and Small-Is-Beautiful Solar, technical excellence powers modernist energy transitions. Refinement of technical accomplishments and/or technological revolutions are conceived to drive social transformation, despite the unending inequality that has accompanied two centuries of modern energy’s social project. As one observer has noted (Roszak, 1972: 479), the “great paradox of the technological mystique [is] its remarkable ability to grow strong by chronic failure. While the treachery of our technology may provide many occasions for disenchantment, the sum total of failures has the effect of increasing dependence on technical expertise.” Even the vanguard of a sustainable energy transition seems swayed by the magnetism of technical acumen, leading to the result that enthusiast and critic alike embrace a strain of technological politics.
Necessarily, the elevation of technique in both strategies to authoritative status vests political power in experts most familiar with energy technologies and systems. Such a governance structure derives from the democratic-authoritarian bargain described by Mumford (1964). Governance “by the people” consists of authorizing qualified experts to assist political leaders in finding the efficient, modern solution. In the narratives of both conventional and sustainable energy, citizens are empowered to consume the products of the energy regime while largely divesting themselves of authority to govern its operations.
Indeed, systems of the sort envisioned by advocates of conventional and sustainable strategies are not governable in a democratic manner. Mumford suggests (1964: 1) that the classical idea of democracy includes “a group of related ideas and practices ... [including] communal self-government ... unimpeded access to the common store of knowledge, protection against arbitrary external controls, and a sense of moral responsibility for behavior that affects the whole community.” Modern conventional and sustainable energy strategies invest in external controls, authorize abstract, depersonalized interactions of suppliers and demanders, and celebrate economic growth and technical excellence without end. Their social consequences are relegated in both paradigms to the status of problems-to-be-solved, rather than being recognized as the emblems of modernist politics. As a result, modernist democratic practice becomes imbued with an authoritarian quality, which “deliberately eliminates the whole human personality, ignores the historic process, [and] overplays the role of abstract intelligence, and makes control over physical nature, ultimately control over man himself, the chief purpose of existence” (Mumford, 1964: 5). Meaningful democratic governance is willingly sacrificed for an energy transition that is regarded as scientifically and technologically unassailable.
Triumphant Energy Capitalism
Where the power to govern is not vested in experts, it is given over to market forces in both the conventional and the sustainable energy programs. Just as the transitions envisioned in the two paradigms are alike in their technical preoccupations and governance ideologies, they are also alike in their political-economic commitments. Specifically, modernist energy transitions operate in, and evolve from, a capitalist political economy. Huber and Mills (2005) are convinced that conventional techno-fixes will expand productivity and increase prosperity to levels that will erase the current distortions of inequality. Expectably, conventional energy’s aspirations present little threat to the current energy political economy; indeed, the aim is to reinforce and deepen the current infrastructure in order to minimize costs and sustain economic growth. The existing alliance of government and business interests is judged to have produced social success and, with a few environmental correctives that amount to the modernization of ecosystem performance, the conventional energy project fervently anticipates an intact energy capitalism that willingly invests in its own perpetuation.
While advocates of sustainable energy openly doubt the viability of the conventional program and emphasize its social and environmental failings, there is little indication that capitalist organization of the energy system is faulted or would be significantly changed with the ascendance of a renewables-based regime. The modern cornucopia will be powered by the profits of a redirected market economy that diffuses technologies whose energy sources are available to all and are found everywhere. The sustainable energy project, according to its architects, aims to harness nature’s ‘services’ with technologies and distributed generation designs that can sustain the same impulses of growth and consumption that underpin the social project of conventional energy. Neither its corporate character, nor the class interests that propel capitalism’s advance, are seriously questioned. The only glaring difference with the conventional energy regime is the effort to modernize social relations with nature.
In sum, conventional and sustainable energy strategies are mostly quiet about matters of concentration of wealth and privilege that are the legacy of energy capitalism, although both are vocal about support for changes consistent with middle class values and lifestyles. We are left to wonder why such steadfast reluctance exists to engaging problems of political economy. Does it stem from a lack of understanding? Is it reflective of a measure of satisfaction with the existing order? Or is there a fear that critical inquiry might jeopardize strategic victories or diminish the central role of ‘energy’ in the movement’s quest?
Transition without Change: A Failing Discourse
After more than thirty years of contested discourse, the major ‘energy futures’ under consideration appear committed to the prevailing systems of governance and political economy that animate late modernity. The new technologies — conventional or sustainable — that will govern the energy sector and accumulate capital might be described as centaurian technics in which the crude efficiency of the fossil energy era is bestowed a new sheen by high technologies and modernized ecosystems: capitalism without smoky cities, contaminated industrial landscapes, or an excessively carbonized atmosphere. Emerging energy solutions are poised to realize a postmodern transition (Roosevelt, 2002), but their shared commitment to capitalist political economy and the democratic-authoritarian bargain lend credence to Jameson’s assessment (1991) of postmodernism as the “cultural logic of late capitalism.”
Differences in ecological commitments between conventional and sustainable energy strategies still demarcate a battleground that, we agree, is important — even fundamental. But so also are the common aspirations of the two camps. Each sublimates social considerations in favor of a politics of more-is-better, and each regards the advance of energy capitalism with a sense of inevitability and triumph. Conventional and sustainable energy visions equally presume that a social order governed by a ‘democratic’ ideal of cornucopia, marked by economic plenty, and delivered by technological marvels will eventually lance the wounds of poverty and inequality and start the healing process. Consequently, silence on questions of governance and social justice is studiously observed by both proposals. Likewise, both agree to, or demur on, the question of capitalism’s sustainability. Nothing is said on these questions because, apparently, nothing needs to be.
If the above assessment of the contemporary energy discourse is correct, then the enterprise is not at a crossroad; rather, it has reached a point of acquiescence to things as they are. Building an inquiry into energy as a social project will require the recovery of a critical voice that can interrogate, rather than concede, the discourse’s current moorings in technological politics and capitalist political economy. A fertile direction in this regard is to investigate an energy-society order in which energy systems evolve in response to social values and goals, and not simply according to the dictates of technique, prices, or capital. ...
Predictably, modern society will underscore its wealth and technical acumen as evidence of its superiority over alternatives. But smugness cannot overcome the fact that energy-society relations are evident in which the bribe of democratic-authoritarianism and the unsustainability of energy capitalism are successfully declined. In 1928, Mahatma Gandhi (cited in Gandhi, 1965: 52) explained why the democratic-authoritarian bargain and Western capitalism should be rejected:
The challenge of a social inquiry into energy-society relations awaits.
Also see: "Relocating Energy in the Social Commons: Ideas for a Sustainable Energy Utility", by John Byrne, Cecilia Martinez, and Colin Ruggero, Bulletin of Science, Technology & Society, April 2009, 29 (2), pp. 81-94:
Abstract: Climate change, rising energy costs, and other dilemmas raise the prospect for major change in energy-ecology-society relations. Two prominent proposals for change include: a nuclear power renaissance; and mega-scale renewable energy development. Both suggest that modern society will receive a rising stream of less CO2-rich kilowatt-hours, so that increased energy consumption and economic growth can continue. The article doubts these CO2 claims and finds both options lead to deepening unsustainability and environmental injustice. A third approach is proposed. A new institutional and community strategy called a Sustainability Energy Utility. The SEU looks to reduce energy use and seeks to support remaining energy needs by community-scale renewables. To accomplish deep energy change, the authors show how an SEU can move society from an energy commodity to energy commons regime. Commonwealth economy and community trusts are key means to significant change: a future commons is offered as the more appropriate strategy.
by John Byrne and Noah Toly
(in Transforming Power: Energy, Environment, and Society in Conflict (ch. 1), 2006, Transaction)
[click here to download PDF (complete, with notes and references)]
From climate change to acid rain, contaminated landscapes, mercury pollution, and biodiversity loss, the origins of many of our least tractable environmental problems can be traced to the operations of the modern energy system. A scan of nightfall across the planet reveals a social dilemma that also accompanies this system’s operations: invented over a century ago, electric light remains an experience only for the socially privileged. Two billion human beings — almost one-third of the planet’s population — experience evening light by candle, oil lamp, or open fire, reminding us that energy modernization has left intact — and sometimes exacerbated — social inequalities that its architects promised would be banished (Smil, 2003: 370-373). And there is the disturbing link between modern energy and war. Whether as a mineral whose control is fought over by the powerful (for a recent history of conflict over oil, see Klare, 2002b, 2004, 2006), or as the enablement of an atomic war of extinction, modern energy makes modern life possible and threatens its future.
With environmental crisis, social inequality, and military conflict among the significant problems of contemporary energy-society relations, the importance of a social analysis of the modern energy system appears easy to establish. One might, therefore, expect a lively and fulsome debate of the sector’s performance, including critical inquiries into the politics, sociology, and political economy of modern energy. Yet, contemporary discourse on the subject is disappointing: instead of a social analysis of energy regimes, the field seems to be a captive of euphoric technological visions and associated studies of “energy futures” that imagine the pleasing consequences of new energy sources and devices.
One stream of euphoria has sprung from advocates of conventional energy, perhaps best represented by the unflappable optimists of nuclear power who, early on, promised to invent a “magical fire” (Weinberg, 1972) capable of meeting any level of energy demand inexhaustibly in a manner “too cheap to meter” (Lewis Strauss, cited in the New York Times 1954, 1955). In reply to those who fear catastrophic accidents from the “magical fire” or the proliferation of nuclear weapons, a new promise is made to realize “inherently safe reactors” (Weinberg, 1985) that risk neither serious accident nor intentionally harmful use of high-energy physics. Less grandiose, but no less optimistic, forecasts can be heard from fossil fuel enthusiasts who, likewise, project more energy, at lower cost, and with little ecological harm (see, e.g., Yergin and Stoppard, 2003).
Skeptics of conventional energy, eschewing involvement with dangerously scaled technologies and their ecological consequences, find solace in “sustainable energy alternatives” that constitute a second euphoric stream. Preferring to redirect attention to smaller, and supposedly more democratic, options, “green” energy advocates conceive devices and systems that prefigure a revival of human scale development, local self-determination, and a commitment to ecological balance. Among supporters are those who believe that greening the energy system embodies universal social ideals and, as a result, can overcome current conflicts between energy “haves” and “have-nots.” In a recent contribution to this perspective, Vaitheeswaran suggests (2003: 327, 291), “today’s nascent energy revolution will truly deliver power to the people” as “micropower meets village power.” Hermann Scheer echoes the idea of an alternative energy-led social transformation: the shift to a “solar global economy ... can satisfy the material needs of all mankind and grant us the freedom to guarantee truly universal and equal human rights and to safeguard the world’s cultural diversity” (Scheer, 2002: 34).
The euphoria of contemporary energy studies is noteworthy for its historical consistency with a nearly unbroken social narrative of wonderment extending from the advent of steam power through the spread of electricity (Nye, 1999). The modern energy regime that now powers nuclear weaponry and risks disruption of the planet’s climate is a product of promises pursued without sustained public examination of the political, social, economic, and ecological record of the regime’s operations. However, the discursive landscape has occasionally included thoughtful exploration of the broader contours of energy-environment-society relations.
As early as 1934, Lewis Mumford (see also his two-volume Myth of the Machine, 1966; 1970) critiqued the industrial energy system for being a key source of social and ecological alienation (1934: 196):
The changes that were manifested in every department of Technics rested for the most part on one central fact: the increase of energy. Size, speed, quantity, the multiplication of machines, were all reflections of the new means of utilizing fuel and the enlargement of the available stock of fuel itself. Power was dissociated from its natural human and geographic limitations: from the caprices of the weather, from the irregularities that definitely restrict the output of men and animals.By 1961, Mumford despaired that modernity had retrogressed into a life-harming dead end (1961: 263, 248):
... an orgy of uncontrolled production and equally uncontrolled reproduction: machine fodder and cannon fodder: surplus values and surplus populations ...Modernity’s formula for two centuries had been to increase energy in order to produce overwhelming economic growth. While diagnosing the inevitable failures of this logic, Mumford nevertheless warned that modernity’s supporters would seek to derail present-tense evaluations of the era’s social and ecological performance with forecasts of a bountiful future in which, finally, the perennial social conflicts over resources would end. Contrary to traditional notions of democratic governance, Mumford observed that the modern ideal actually issues from a pseudomorph that he named the “democratic-authoritarian bargain” (1964: 6) in which the modern energy regime and capitalist political economy join in a promise to produce “every material advantage, every intellectual and emotional stimulus [one] may desire, in quantities hardly available hitherto even for a restricted minority” on the condition that society demands only what the regime is capable and willing to offer. An authoritarian energy order thereby constructs an aspirational democracy while facilitating the abstraction of production and consumption from non-economic social values.
The dirty crowded houses, the dank airless courts and alleys, the bleak pavements, the sulphurous atmosphere, the over-routinized and dehumanized factory, the drill schools, the second-hand experiences, the starvation of the senses, the remoteness from nature and animal activity — here are the enemies. The living organism demands a life-sustaining environment.
The premises of the current energy paradigms are in need of critical study in the manner of Mumford’s work if a world measurably different from the present order is to be organized. Interrogating modern energy assumptions, this chapter examines the social projects of both conventional and sustainable energy as a beginning effort in this direction. The critique explores the neglected issue of the political economy of energy, underscores the pattern of democratic failure in the evolution of modern energy, and considers the discursive continuities between the premises of conventional and sustainable energy futures.
Proposals by its stakeholders to fix the modern energy system abound. Advocates envision bigger, more expensive, and more complex machines to spur and sate an endlessly increasing world energy demand. From clean coal to a revived nuclear energy strategy, such developments promise a worldwide movement to a cleaner and more socially benign energy regime that retains its modern ambitions of bigger, more, and better. Proponents even suggest that we might have our cake and eat it too, promoting patterns of energy production, distribution, and consumption consistent with an unconstrained ideology of quantification while also banishing environmental threats and taming social risks that energy critics cite in their challenges to the mainstream. Consistent with a program of ecological modernization, the conventional energy regime’s architects are now exploring new technologies and strategies that offer what are regarded as permanent solutions to our energy troubles without harming our ecological future or disturbing the goal of endless economic growth and its attendant social relations.
Greening Fossil Fuels
Among the most prominent techno-fixes for modern energy are those seeking to “green” the fossil fuels (see e.g., Jaccand, 2005). The substitution of natural gas for other hydrocarbons, the emergence of “clean coal,” the “ecologically sustainable” mining of what are supposed to be vast, untapped oil reserves in heretofore unfriendly terrains, and the geological sequestration of climate-destabilizing CO₂ emissions are among the most favored in this category. Each represents an effort to legitimate the conventional energy regime without displacing fossil fuel’s powerful role in rationalizing centralized energy production and distribution. ...
Importantly, the higher and higher financial costs of propping up the fossil fuel regime never seem to doom such thinking. Why is it that a commitment to fossil energy enlarges as the crises it causes deepen? In a recent book, Huber and Mills (2005: 165, emphasis added) suggest that “energy is the key to survival and prosperity” and that the only solution to today’s energy problems is increased consumption aided by tomorrow’s technical developments. They argue that (2005: xxiii, xxvi) “energy begets more energy; tomorrow’s supply is determined by today’s consumption. The more energy we seize and use, the more adept we become at finding and seizing still more. ... Energy isn’t the problem. Energy is the solution.” Huber and Mills also highlight the synergistic relationship between modern energy, modern technology, and the pursuit of “more” (2005: 155, emphasis added): “We will never stop wanting more logic, more memory, more vision, more range — all of which depend upon high grade energy — because we are built to want more of these things, an unlimited more.”
Describing the ideal energy regime as a “perpetual motion machine” (2005: 4), Huber and Mills suggest that energy consumption spurs technical developments that permit the extraction and consumption of even greater quantities of energy in more usable forms despite, or even because of, increased waste. Emerging technologies, suggest Huber and Mills, are (2005: 43):
as revolutionary as Watt’s steam regulator was in 1763, as Otto’s spark-ignited petroleum in 1876, as Edison’s electrically-heated filament in 1879, as de Laval’s hot-gas turbine in 1882. And they too will redefine, yet again, how much energy we want and how much we can get. We will want more — much more. And we will get it, easily. Unless, somehow, our optimism, drive, courage, and will give way to lethargy and fear.Such sanguinity names its source — modernist confidence in science, technology, and business. The alliance of these three institutions, through a common language of quantity (Mumford, 1934; see also Kumar, 1978, 1988, 2005; Nye, 1999) built the world order in which our daily lives now transpire. Hesitation in the support of this alliance is tantamount to a civilization losing courage, surrendering to lethargy and fear. For conventional energy’s enthusiasts, we have nothing to fear — neither climate change nor conflict over energy resources — but fear, itself. In this respect, our future cannot spring from anywhere other than a “bottomless well” (Huber and Mills, 2005) of energy and optimism.
Remaining modern, however, also demands an increasing commitment to override what lags behind from a modernist point of view. The bottomless wells to which Huber and Mills refer are increasingly found among the most vulnerable ecologies and communities, and their sacrifice to deliver more energy also involves the geological-scale refinement of physical formations, biological-scale modification of evolution, and historical-scale alteration of social relations. A recent advertisement by Occidental Petroleum blends modernist ideology with the hubris of modern management as “Oxy brings energy to energy solutions” (Occidental Petroleum Corporation, 2005):
Oxy is on the cutting edge in using advanced techniques to maximize the recovery of oil and natural gas worldwide. Energy is the lifeblood of the sustainable development process that is critical to overcoming poverty and raising living standards. And we’re working hard to meet the world’s ever growing demand for reliable energy supplies.While the company imagines energy as the lifeblood of progress, the U’wa people in Colombia, on whose lands the oil envied by Occidental Petroleum resides, describe it as the lifeblood of “Mother Earth.” Oil extraction would represent the slow death of both ecology and culture for the U’wa (J. T. Roberts and Thanos, 2003; Lee, forthcoming).
In addition to a disregard for cultural continuity in traditional and indigenous communities, extending the capacity to exploit fossil fuels through modernization of the conventional energy regime carries an additional requirement. As Michael Klare (2004, 2006) indicates, continued dependence upon oil, coupled with diminishing supplies and increasing demand, is likely to mean increased global conflict. The same can be said of natural gas (Klare, 2002b: 81-108). An industrialized world moored to the conventional energy regime will, in all likelihood, force further needs to militarize its operations.
Giant Power Revivalism
Life extension projects for the conventional energy regime are not limited to technological “greening” of fossil fuels. Plans also include a revival of “Giant Power” strategies, which had happened upon hard times by the 1980s. Gifford Pinchot, a two-term governor of Pennsylvania (1922-1926 and 1930-1934) is credited with coining the term in a speech, proclaiming:
Steam brought about the centralization of industry, a decline in country life, the decay of many small communities, and the weakening of family ties. Giant Power may bring about the decentralization of industry, the restoration of country life, and the upbuilding of small communities and the family. ... [T]he coming electrical development will form the basis of a civilization happier, freer, and fuller of opportunity than the world has ever known.The first proposals for Giant Power involved the mega-dams of the early and middle twentieth century. The U.S. pioneered this option with its construction of the Hoover, Grand Coulee, and Glen Canyon Dams, among others (Worster, 1992; Reisner, 1993). Undertaken by the U.S. Bureau of Reclamation, these projects were intended to “reclaim” the energy and water development potential from the rivers of the western United States. These were truly mammoth enterprises resulting in integrated water and energy resource development on scales previously unknown. Construction of the Glen Canyon Dam was authorized by the U.S. Congress under the Colorado River Storage Project. Built from 1957 to 1964, it was originally planned to generate 1,000 MW. Over the next few decades two additional generators were added to the dam, allowing the dam to produce 1,296 MW. In 1991 Interim Operating Criteria were adopted to protect downstream resources, which limited the dam releases to 20,000 cubic feet of water and the power output to 767 MW. The dam currently generates power for roughly 1.5 million users in five states (Bureau of Reclamation (U.S.), 2005a).
Mega-dams, such as the Glen Canyon, lost social support in the United States in the 1970s as ecological impacts and financial risks slowed interest. But many countries have shown a resurgent interest in large dams as an energy strategy. Canada has committed to building what will be one of the largest dams in the world — Syncrude Tailings — which will have the largest water impoundment volume in the world at 540 million cubic meters (Bureau of Reclamation (U.S.), 2005b). And China, with more than 20,000 dams of more than fifteen meters in height is constructing what will be the largest hydroelectric facility in the world on Earth’s third largest river. The Three Gorges Dam, on the Yangtze, at a “mere” 575 feet tall — sixty-first tallest in the world — will have a generating capacity of more than 18,000 MW, roughly equivalent to 10 percent of China’s electricity demand. This will require twenty-six hydro turbines, purchased from ABB, Alstom, GE, Kvaerner, Siemens, and Voith, highlighting the synergies between global corporatism and Giant Power (Power Technology, 2005).
Large-scale hydropower represents an attempt at a techno-fix of the democratic-authoritarian variety. Without disrupting the conventional energy regime’s paradigm of centralized generation and distribution, large dams purport to deliver environmentally benign and socially beneficial electricity in amounts that reinforce the giant character of the existing dams. In fact, both ecologically and socially disruptive, large dams represent continued commitment to the promises, prospects, and perils of the conventional energy regime and its social project (McCully, 2001: 265; Hoffman, 2002; Totten, Pandya, and Janson-Smith, 2003; Agbemabiese and Byrne, 2005; Bosshard, 2006).
A second mega-energy idea has been advanced since the 1950s — the nuclear energy project. Born at a time in U.S. history when there were no pressing supply problems, nuclear power’s advocates promised an inexhaustible source of Giant Power. Along with hydropower, nuclear energy has been conceived as a non-fossil technical fix for the conventional energy regime.
But nuclear energy has proven to be among the most potent examples of technological authoritarianism (Byrne and Hoffman, 1988, 1992, 1996) inherent in the techno-fixes of the conventional energy regime. On April 26, 1986, nuclear dreams were interrupted by a hard dose of reality — the accident at Chernobyl’s No. 4 Reactor, with a radioactive release more than ten times that of the atomic bomb dropped on Hiroshima (Medvedev, 1992). Both human and non-human impacts of this greatest of technological disasters have been well-documented (Medvedev, 1992). The Chernobyl explosion and numerous near-accidents, other technical failures, and extraordinary cost-overruns caused interest in nuclear energy to wane during the 1980s and 1990s.
Notwithstanding a crippling past, the nuclear lobby has engineered a resurgence of interest through a raft of technological fixes that purport to prevent future calamitous failures while capitalizing on the supposed environmentally sound qualities of nuclear power. Huber and Mills, for example, title one of their chapters “Saving the Planet with Coal and Uranium” (2005: 156-171). A spokesperson for the Electric Power Research Institute has recently suggested that new pebble-bed modular reactors are “walk-away safe — if something goes wrong, the operators can go out for coffee while they figure out what to do” (quoted in Silberman, 2001). Such claims are eerily reminiscent of pre-Chernobyl comparisons between the safety of nuclear power plants and that of chocolate factories (The Economist, 1986). Huber and Mills go even further, claiming nuclear power will exceed the original source of solar power — the sun (2005: 180): “Our two-century march from coal to steam engine to electricity to laser will ... culminate in a nuclear furnace that burns the same fuel, and shines as bright as the sun itself. And then we will invent something else that burns even brighter.”
Critics, however, note that even if such technical advances can provide for accident-free generation of electricity, there are significant remaining social implications of nuclear power, including its potential for terrorist exploitation and the troubling history of connections between military and civilian uses of the technology (Bergeron, 2002; Bergeron and Zimmerman, 2006). As well, the life-cycle of nuclear energy development produces risks that continuously challenge its social viability. To realize a nuclear energy-based future, massive amounts of uranium must be extracted. This effort would ineluctably jeopardize vulnerable communities since a considerable amount of uranium is found on indigenous lands. For example, Australia has large seams of uranium, producing nearly one-quarter of the world’s supply, with many mines located on Aboriginal lands (Uranium Information Center, 2005). Even after the uranium is secured and electricity is generated, the project’s adverse social impacts continue. Wastes with half-lives of lethal threat to any form of life in the range of 100,000 to 200,000 years have to be buried and completely mistake-free management regimes need to be operated for this length of time — longer than human existence, itself. Epochal imagination of this kind may be regarded by technologists as reasonable, but the sanity of such a proposal on social grounds is surely suspect (Byrne and Hoffman, 1996).
Immaterial Techniques
Repair of the existing regime is not limited to efforts to secure increasing conventional supplies. Also popular are immaterial techniques emerging from the field of economics and elsewhere that offer policy reforms as the means to overcome current problems. Electricity liberalization exemplifies this approach. Here, inefficiencies in the generation and distribution of electricity in the conventional energy regime are targeted for remedy by the substitution of market dynamics for regulatory logic. Purported inefficiencies are identified, in large part, as the result of regulations that have distorted market prices either by subsidizing unjustifiable investments or by guaranteeing rates of return for compliant energy companies. Proponents of liberalization promise greater and more reliable energy supplies with the removal of regulation-induced market distortions (Pollitt, 1995; World Bank, 1993, 2003, 2004a).
Environmental concerns with the prevailing energy order can also be used to support liberalized market strategies. For example, while Huber and Mills (2005: 157) suggest that increased use of hydrocarbons is actually the preferred solution to the problem of climate change, arguing that, “for the foreseeable future, the best (and only practical) policy for limiting the buildup of carbon dioxide in the air is to burn more hydrocarbons — not fewer,” others suggest the superiority of immaterial techniques such as the commercialization of the atmospheric commons. Thus, David Victor (2005) attributes the collapse of the Kyoto Protocol to a failure to embrace the economic superiority of emissions trading and other market-oriented mechanisms and calls for conventional energy’s collision with climate to be addressed by a healthy dose of competitive marketing of carbon-reducing options. The outcome of a trading regime to reduce carbon will almost certainly be life-extensions for the fossil fuels and nuclear energy since it would ‘offset’ the carbon problems of the former and embrace the idea of the cost-effectiveness of the latter to avoid carbon emissions. ...
Conventional techno-fixes to increase energy supplies cannot remove risks, nor can market economics, but together they seek to convince society that abandonment of the modern energy project is nonetheless unwarranted. ...
The problems of the conventional energy order have led some to regard reinforcement of the status quo as folly and to instead champion sustainable energy strategies based upon non-conventional sources and a more intelligent ideology of managed relations between energy, environment, and society consonant with environmental integrity. This regime challenger seeks to evolve in the social context that produced the conventional energy regime, yet proposes to fundamentally change its relationship to the environment (at least, this is the hope). Technologies such as wind and photovoltaic electricity are purported to offer building blocks for a transition to a future in which ills plaguing modernity and unsolved by the conventional energy regime can be overcome (Lovins, 1979; Hawken et al., 2000; Scheer, 2002; Rifkin, 2003; World Bank, 2004b).
While technical developments always include social, material, ecological, intellectual, and moral infrastructures (Winner, 1977: 54-58; Toly, 2005), and may, therefore, be key to promoting fundamentally different development pathways, it is also possible that technologies, even environmentally benign ones, will be appropriated by social forces that predate them and, thereby, can be thwarted in the fulfillment of social promises attached to the strategy. Indeed, if unaccompanied by reflection upon the social conditions in which the current energy regime thrives, the transition to a renewable energy regime may usher in very few social benefits and little, if any, political and economic transformation. This is the concern that guides our analysis (below) of the sustainable energy movement.
At least since the 1970s when Amory Lovins (1979) famously posed the choice between “hard” and “soft” energy paths, sustainable energy strategies have been offered to challenge the prevailing regime. ... Partly, early criticisms of the mainstream were reflective of a broader social agenda that drew upon, among other things, the anti-war and anti-corporate politics of the 1960s. It was easy, for example, to connect the modern energy regime to military conflicts of the period and to superpower politics; and it was even easier to ally the mainstream’s promotion of nuclear power to the objectives of the Nuclear Club. With evidence of profiteering by the oil majors in the wake of the 1973-1974 OPEC embargo, connecting the energy regime with the expanding power of multinational capital was, likewise, not difficult. Early sustainable energy strategies opposed these alliances, offering promises of significant political, as well as technological, change.
However, in the thirty years that the sustainable energy movement has aspired to change the conventional regime, its social commitments and politics have become muddled. A telling sign of this circumstance is the shifted focus from energy politics to economics. To illustrate, in the celebrated work of one of the movement’s early architects, subtitles to volumes included “breaking the nuclear link” (Amory Lovins’ Energy/War, 1981) and “toward a durable peace” (Lovins’ Soft Energy Paths, 1979). These publications offered poignant challenges to the modern order and energy’s role in maintaining that order.
Today, however, the bestsellers of the movement chart a course toward “natural capitalism” (Hawken et al., 2000), a strategy that anticipates synergies between soft path technologies and market governance of energy-environment-society relations. Indeed, a major sustainable energy think tank has reached the conclusion that “small is profitable” (Lovins et al., 2002) in energy matters and argues that the soft path is consistent with “economic rationalism.” Understandably, a movement that sought basic change for a third of a century has found the need to adapt its arguments and strategies to the realities of political and economic power. Without adaptation, the conventional energy regime could have ignored soft path policy interventions like demand-side management, integrated resource planning, public benefits charges, and renewable energy portfolio standards (see Lovins and Gadgil, 1991; Sawin, 2004), all of which have caused an undeniable degree of decentralization in energy-society relations. In this vein, it is clear that sustainability proponents must find ways to speak the language and communicate in the logic of economic rationalism if they are to avoid being dismissed. We do not fault the sustainable energy camp for being strategic. Rather, the concern is whether victories in the everyday of incremental politics have been balanced by attention to the broader agenda of systemic change and the ideas needed to define new directions.
A measure of the sustainable energy initiative’s strategic success is the growing acceptance of its vision by past adversaries. Thus, Small is Profitable was named ‘Book of the Year’ in 2002 by The Economist, an award unlikely to have been bestowed upon any of Lovins’ earlier works. As acceptance has been won, it is clear that sustainable energy advocates remain suspicious of the oil majors, coal interests, and the Nuclear Club. But an earlier grounding of these suspicions in anti-war and anti-corporate politics appears to have been superseded by one that believes the global economy can serve a sustainability interest if the ‘raison de market’ wins the energy policy debate. Thus, it has been suggested that society can turn “more profit with less carbon,” by “harnessing corporate power to heal the planet” (Lovins, 2005; L. H. Lovins and A. B. Lovins, 2000). Similarly, Hermann Scheer (2002: 323) avers: “The fundamental problem with today’s global economy is not globalization per se, but that this globalization is not based on the sun — the only global force that is equally available to all and whose bounty is so great that it need never be fully tapped.” However, it is not obvious that market economics and globalization can be counted upon to deliver the soft path (see e.g. Nakajima and Vandenberg, 2005). More problematic, as discussed below, the emerging soft path may fall well short of a socially or ecologically transforming event if strategic victories and rhetorics that celebrate them overshadow systemic critiques of energy-society relations and the corresponding need to align the sustainable energy initiative with social movements to address a comprehensive agenda of change.
Catching the Wind
To date, the greatest success in ‘real’ green energy development is the spread of wind power. From a miniscule 1,930 MW in 1990 to more than 47,317 MW in 2005, wind power has come of age. Especially noteworthy is the rapid growth of wind power in Denmark (35 percent per year since 1997), Spain (30 percent per year since 1997), and Germany (an astonishing 68 percent per year since 2000), where policies have caused this source to threaten the hegemony of fossil fuels and nuclear energy. Wind now generates more than 20 percent of Denmark’s electricity and the country is the world leader in turbine manufacture. And as the Danes have demonstrated, offshore wind has the potential to skirt some of the land-use conflicts that have sometimes beset renewable energy alternatives. Indeed, some claim that offshore wind alone might produce all of Europe’s residential electricity (Brown, 2004). National energy strategists and environmental movements in and beyond Europe have recognized the achievements of the Danes, Spaniards, and Germans with initiatives designed to imitate their success.
What are the characteristics of this success? One envied feature is the remarkable decline in the price of wind-generated electricity, from $0.46 per kWh in 1980 to $0.03 to $0.07 per kWh today (Sawin, 2004), very close to conventionally-fueled utility generating costs in many countries, even before environmental impacts are included. Jubilant over wind’s winning market performance, advocates of sustainable energy foresee a new era that is ecologically much greener and, yet, in which electricity remains (comparatively) cheap. Lester Brown (2003: 159) notes that wind satisfies seemingly equally weighted criteria of environmental benefit, social gain, and economic efficiency:
Wind is ... clean. Wind energy does not produce sulfur dioxide emissions or nitrous oxides to cause acid rain. Nor are there any emissions of health-threatening mercury that come from coal-fired power plants. No mountains are leveled, no streams are polluted, and there are no deaths from black lung disease. Wind does not disrupt the earth’s climate ... [I]t is inexhaustible ... [and] cheap.This would certainly satisfy the canon of economic rationalism.
It is also consistent with the ideology of modern consumerism. Its politics bestow sovereignty on consumers not unlike the formula of Pareto optimality, a situation in which additional consumption of a good or service is warranted until it cannot improve the circumstance of one person (or group) without decreasing the welfare of another person (or group). How would one know “better off” from “worse off” in the wind-rich sustainable energy era? Interestingly, proponents seem to apply a logic that leaves valuation of “better” and “worse” devoid of explicit content. ... Sustainable energy in this construct cooperates in the abstraction of consumption and production. Consumption-of-what, -by-whom, and -for-what-purpose, and, relatedly, production-of-what, -by-whom, and -for-what-purpose are not issues. The construct altogether ignores the possibility that “more-is-better” consumption-production relations may actually reinforce middle class ideology and capitalist political economy, as well as contribute to environmental crises such as climate change. In the celebration of its coming market victory, the cheap-and-green wind version of sustainable energy development may not readily distinguish the economic/class underpinnings of its victory from those of the conventional energy regime.
Wind enthusiasts also appear to be largely untroubled by trends toward larger and larger turbines and farms, the necessity of more exotic materials to achieve results, and the advancing complications of catching the wind. There is nothing new about these sorts of trends in the modern period. The trajectory of change in a myriad of human activities follows this pattern. Nor is a critique per se intended in an observation of this trend. Rather, the question we wish to raise is whether another feature in this pattern will likewise be replicated — namely, a “technological mystique” (Bazin, 1986) in which social life finds its inspiration and hope in technical acumen and searches for fulfillment in the ideals of technique (Mumford, 1934; Ellul, 1964; Marcuse, 1964; Winner, 1977, 1986; Vanderburg, 2005).
This prospect is not a distant one, as a popular magazine recently illustrated. In a special section devoted to thinking “After Oil,” National Geographic approvingly compared the latest wind technology to a well-known monument, the Statue of Liberty, and noted that the new machines tower more than 400 feet above this symbol (Parfit, 2005: 15-16). It was not hard to extrapolate from the story the message of Big Wind’s liberatory potential. Popular Science also commended new wind systems as technological marvels, repeating the theme that, with its elevation in height and complexity lending the technology greater status, wind can now be taken seriously by scientists and engineers (Tompkins, 2005). A recent issue of The Economist (2005) included an article on the wonder of electricity generated by an artificial tornado in which wind is technologically spun to high velocities in a building equipped with a giant turbine to convert the energy into electricity. Indeed, wind is being contemplated as a rival able to serve society by the sheer technical prowess that has often been a defining characteristic of modern energy systems.
... Big Wind appears to seek monumental status in the psyche of ecologically modern society. A recent alliance of the American Wind Energy Association and the U.S. electric utility industry to champion national (subsidized) investment in higher voltage transmission lines (to deliver green-and-cheap electricity), illustrates the desire of Big Wind to plug into Giant Power’s hardware and, correspondingly, its ideology (see American Wind Energy Association, 2005, supporting “Transmission Infrastructure Modernization”). The transformative features of such a politics are unclear. Indeed, wind power — if it can continue to be harvested by ever-larger machines — may penetrate the conventional energy order so successfully that it will diffuse, without perceptible disruption, to the regime. The air will be cleaner but the source of this achievement will be duly noted: science will have triumphed still again in wresting from stingy nature the resources that a wealthy life has grown to expect. Social transformation to achieve sustainability may actually be unnecessary by this political view of things, as middle-class existence is assured via clean, low-cost and easy-to-plug-in wind power.
Small-is-Beautiful Solar
The second fastest growing renewable energy option — solar electric power — is proving more difficult to plug in. Despite steady declines in the cost per kWh of energy generated by photovoltaic (PV) cells, this alternative remains a pricey solution by conventional standards. Moreover, the technology does not appear to have significant scale economies, partly because the efficiency of PV cannot be improved by increasing the size of the device or its application. That is, unit energy costs of large installations of many PV arrays do not deviate appreciably from those for small installations comprised of fewer arrays. Instead, the technology seems to follow a modular economic logic in which unit costs neither grow nor decline with scale. Some have praised this attribute, suggesting that PV’s modularity means there are no technical or economic reasons for scaling its application to iconic levels that conventional power plants now represent, potentiating a more robust system of distributed generation and delivering clean energy to previously marginalized populations (Martinot and Reiche, 2000; Martinot et al., 2002). ...
Perhaps because PV has, so far, found wider social usage in rural contexts where poverty (as modernly conceived) persists, discussions, in fact, crop up about solar’s social project. For example, arguments have formed around the gender interests of PV, at least as it has been diffused in rural life to date (see, for example, Allerdice and Rogers, 2000). And criticism has surfaced about PV’s ‘capture’ by the state as a tool to quiet, if not mollify, the rural poor (Okubo, 2005: 49-58). There has even been a charge that PV and other renewables are being used by multilateral organizations such as the World Bank to stall Southern development. By imposing a fragmented patchwork of tiny, expensive solar generators on, for example, the African rural landscape, instead of accumulating capital in an industrial energy infrastructure, the World Bank and other actors are accused of being unresponsive to the rapid growth needs of the South (Davidson and Sokona, 2002; Karekezi and Kithyoma, 2002). A related challenge of PV’s class interests has raised questions about the technology’s multinational corporate owners and offered doubts about successful indigenization of solar cell manufacturing (Able-Thomas, 1995; Guru, 2002: 27; Bio-Energy Association of Sri Lanka, 2004: 20). Regardless of one’s position on these debates, it is refreshing to at least see solar energy’s possible political and economic interests considered.
But PV’s advocates have not embraced the opportunities created by its rural examiners to seriously investigate the political economy of solar energy. The bulk of solar research addresses engineering problems, with a modest social inquiry focused on issues of technological transition in which solar electricity applications are to find their way into use with as little social resistance or challenge as possible. A green politics that is largely unscarred by conflict is, and for a long time has been, anticipated to characterize an emergent Solar Society (Henderson, 1988; Ikeda and Henderson, 2004). Likewise, solar economics is thought to be consensual as non-renewable options become too expensive and PV cells, by comparison, too cheap to be refused their logical role (see, for example, Henderson, 1995, 1996; Rifkin, 2003). It seems that a solarized social order is inevitable for its proponents, with technological breakthrough and economic cost the principal determinants of when it will arrive.
In this regard, ironically, Small-is-Beautiful Solar shares with Big Wind the aspiration to re-order the energy regime without changing society. Despite modern society’s technological, economic, and political addiction to large-scale, cheap energy systems that solar energy cannot mimic, most PV proponents hope to revolutionize the technological foundation of modernity, without disturbing its social base. A new professional cadre of solar architects and engineers are exhorted to find innovative ways of embedding PV technology in the skin of buildings (Strong, 1999; Benemann, Chehab, and Schaar-Gabriel, 2001), while transportation engineers and urban planners are to coordinate in launching “smart growth” communities where vehicles are powered by hydrogen derived from PV-powered electrolysis to move about in communities optimized for “location efficiency” (Ogden, 1999; Holtzclaw et al., 2002). The wildly oversized ecological footprint of urban societies (Rees and Wackernagel, 1996) is unquestioned as PV decorates its structure.
These tools for erecting a Solar Society intend to halt anthropogenic changes to the chemistry of the atmosphere, rain, and soil mantle while enabling unlimited economic growth. In the Solar Society of tomorrow, we will make what we want, in the amounts we desire, without worry, because all of its energy is derived from the benign, renewable radiation supplied by our galaxy’s sun. Compared to Big Wind, PV may cost more but it promises to deliver an equivalent social result (minus the avian and landscape threats of the former) and, just possibly, with a technical elegance that surpasses the clunky mechanicalness of turbines propelled by wind. In this respect, Solar Society makes its peace with modernity by leaving undisturbed the latter’s cornucopian dreams and, likewise, poses no serious challenge to the social and political structures of the modern era. ...
While the discussion here of sustainable energy advocacy has concentrated on its wind- and solar-animated versions, we believe that strategies anticipating significant roles for geothermal, biomass, micro-hydro, and hydrogen harvested from factories fueled by renewables anticipate variants of the social narratives depicted for the two currently most prominent renewable energy options. The aim of producing more with advancing ecological efficiency in order to consume more with equally advancing consumerist satisfaction underpins the sustainable energy future in a way that would seamlessly tie it to the modernization project.
When measured in social and political-economic terms, the current energy discourse appears impoverished. Many of its leading voices proclaim great things will issue from the adoption of their strategies (conventional or sustainable), yet inquiry into the social and political-economic interests that power promises of greatness by either camp is mostly absent. In reply, some participants may petition for a progressive middle ground, acknowledging that energy regimes are only part of larger institutional formations that organize political and economic power. It is true that the political economy of energy is only a component of systemic power in the modern order, but it hardly follows that pragmatism toward energy policy and politics is the reasonable social response. Advocates of energy strategies associate their contributions with distinct pathways of social development and define the choice of energy strategy as central to the types of future(s) that can unfold. Therefore, acceptance of appeals for pragmatist assessments of energy proposals, that hardly envision incremental consequences, would indulge a form of self-deception rather than represent a serious discursive position.
An extensive social analysis of energy regimes of the type that Mumford (1934; 1966; 1970), Nye (1999), and others have envisioned is overdue. The preceding examinations of the two strategies potentiate conclusions about both the governance ideology and the political economy of modernist energy transitions that, by design, leave modernism undisturbed (except, perhaps, for its environmental performance).
The Technique of Modern Energy Governance
While moderns usually declare strong preferences for democratic governance, their preoccupation with technique and efficiency may preclude the achievement of such ambitions, or require changes in the meaning of democracy that are so extensive as to raise doubts about its coherence. A veneration of technical monuments typifies both conventional and sustainable energy strategies and reflects a shared belief in technological advance as commensurate with, and even a cause of, contemporary social progress. The modern proclivity to search for human destiny in the march of scientific discovery has led some to warn of a technological politics (Ellul, 1997a, 1997b, 1997c; Winner, 1977, 1986) in which social values are sublimated by the objective norms of technical success (e.g., the celebration of efficiency in all things). In this politics, technology and its use become the end of society and members have the responsibility, as rational beings, to learn from the technical milieu what should be valorized. An encroaching autonomy of technique (Ellul, 1964: 133-146) replaces critical thinking about modern life with an awed sense and acceptance of its inevitable reality.
From dreams of endless energy provided by Green Fossil Fuels and Giant Power, to the utopian promises of Big Wind and Small-Is-Beautiful Solar, technical excellence powers modernist energy transitions. Refinement of technical accomplishments and/or technological revolutions are conceived to drive social transformation, despite the unending inequality that has accompanied two centuries of modern energy’s social project. As one observer has noted (Roszak, 1972: 479), the “great paradox of the technological mystique [is] its remarkable ability to grow strong by chronic failure. While the treachery of our technology may provide many occasions for disenchantment, the sum total of failures has the effect of increasing dependence on technical expertise.” Even the vanguard of a sustainable energy transition seems swayed by the magnetism of technical acumen, leading to the result that enthusiast and critic alike embrace a strain of technological politics.
Necessarily, the elevation of technique in both strategies to authoritative status vests political power in experts most familiar with energy technologies and systems. Such a governance structure derives from the democratic-authoritarian bargain described by Mumford (1964). Governance “by the people” consists of authorizing qualified experts to assist political leaders in finding the efficient, modern solution. In the narratives of both conventional and sustainable energy, citizens are empowered to consume the products of the energy regime while largely divesting themselves of authority to govern its operations.
Indeed, systems of the sort envisioned by advocates of conventional and sustainable strategies are not governable in a democratic manner. Mumford suggests (1964: 1) that the classical idea of democracy includes “a group of related ideas and practices ... [including] communal self-government ... unimpeded access to the common store of knowledge, protection against arbitrary external controls, and a sense of moral responsibility for behavior that affects the whole community.” Modern conventional and sustainable energy strategies invest in external controls, authorize abstract, depersonalized interactions of suppliers and demanders, and celebrate economic growth and technical excellence without end. Their social consequences are relegated in both paradigms to the status of problems-to-be-solved, rather than being recognized as the emblems of modernist politics. As a result, modernist democratic practice becomes imbued with an authoritarian quality, which “deliberately eliminates the whole human personality, ignores the historic process, [and] overplays the role of abstract intelligence, and makes control over physical nature, ultimately control over man himself, the chief purpose of existence” (Mumford, 1964: 5). Meaningful democratic governance is willingly sacrificed for an energy transition that is regarded as scientifically and technologically unassailable.
Triumphant Energy Capitalism
Where the power to govern is not vested in experts, it is given over to market forces in both the conventional and the sustainable energy programs. Just as the transitions envisioned in the two paradigms are alike in their technical preoccupations and governance ideologies, they are also alike in their political-economic commitments. Specifically, modernist energy transitions operate in, and evolve from, a capitalist political economy. Huber and Mills (2005) are convinced that conventional techno-fixes will expand productivity and increase prosperity to levels that will erase the current distortions of inequality. Expectably, conventional energy’s aspirations present little threat to the current energy political economy; indeed, the aim is to reinforce and deepen the current infrastructure in order to minimize costs and sustain economic growth. The existing alliance of government and business interests is judged to have produced social success and, with a few environmental correctives that amount to the modernization of ecosystem performance, the conventional energy project fervently anticipates an intact energy capitalism that willingly invests in its own perpetuation.
While advocates of sustainable energy openly doubt the viability of the conventional program and emphasize its social and environmental failings, there is little indication that capitalist organization of the energy system is faulted or would be significantly changed with the ascendance of a renewables-based regime. The modern cornucopia will be powered by the profits of a redirected market economy that diffuses technologies whose energy sources are available to all and are found everywhere. The sustainable energy project, according to its architects, aims to harness nature’s ‘services’ with technologies and distributed generation designs that can sustain the same impulses of growth and consumption that underpin the social project of conventional energy. Neither its corporate character, nor the class interests that propel capitalism’s advance, are seriously questioned. The only glaring difference with the conventional energy regime is the effort to modernize social relations with nature.
In sum, conventional and sustainable energy strategies are mostly quiet about matters of concentration of wealth and privilege that are the legacy of energy capitalism, although both are vocal about support for changes consistent with middle class values and lifestyles. We are left to wonder why such steadfast reluctance exists to engaging problems of political economy. Does it stem from a lack of understanding? Is it reflective of a measure of satisfaction with the existing order? Or is there a fear that critical inquiry might jeopardize strategic victories or diminish the central role of ‘energy’ in the movement’s quest?
After more than thirty years of contested discourse, the major ‘energy futures’ under consideration appear committed to the prevailing systems of governance and political economy that animate late modernity. The new technologies — conventional or sustainable — that will govern the energy sector and accumulate capital might be described as centaurian technics in which the crude efficiency of the fossil energy era is bestowed a new sheen by high technologies and modernized ecosystems: capitalism without smoky cities, contaminated industrial landscapes, or an excessively carbonized atmosphere. Emerging energy solutions are poised to realize a postmodern transition (Roosevelt, 2002), but their shared commitment to capitalist political economy and the democratic-authoritarian bargain lend credence to Jameson’s assessment (1991) of postmodernism as the “cultural logic of late capitalism.”
Differences in ecological commitments between conventional and sustainable energy strategies still demarcate a battleground that, we agree, is important — even fundamental. But so also are the common aspirations of the two camps. Each sublimates social considerations in favor of a politics of more-is-better, and each regards the advance of energy capitalism with a sense of inevitability and triumph. Conventional and sustainable energy visions equally presume that a social order governed by a ‘democratic’ ideal of cornucopia, marked by economic plenty, and delivered by technological marvels will eventually lance the wounds of poverty and inequality and start the healing process. Consequently, silence on questions of governance and social justice is studiously observed by both proposals. Likewise, both agree to, or demur on, the question of capitalism’s sustainability. Nothing is said on these questions because, apparently, nothing needs to be.
If the above assessment of the contemporary energy discourse is correct, then the enterprise is not at a crossroad; rather, it has reached a point of acquiescence to things as they are. Building an inquiry into energy as a social project will require the recovery of a critical voice that can interrogate, rather than concede, the discourse’s current moorings in technological politics and capitalist political economy. A fertile direction in this regard is to investigate an energy-society order in which energy systems evolve in response to social values and goals, and not simply according to the dictates of technique, prices, or capital. ...
Predictably, modern society will underscore its wealth and technical acumen as evidence of its superiority over alternatives. But smugness cannot overcome the fact that energy-society relations are evident in which the bribe of democratic-authoritarianism and the unsustainability of energy capitalism are successfully declined. In 1928, Mahatma Gandhi (cited in Gandhi, 1965: 52) explained why the democratic-authoritarian bargain and Western capitalism should be rejected:
God forbid that India should ever take to industrialization after the manner of the West. The economic imperialism of a single tiny island kingdom (England) is today keeping the world in chains. If an entire nation of 300 million took to similar economic exploitation, it would strip the world bare like locusts. Unless the capitalists of India help to avert that tragedy by becoming trustees of the welfare of the masses and by devoting their talents not to amassing wealth for themselves but to the service of the masses in an altruistic spirit, they will end either by destroying the masses or being destroyed by them.As Gandhi’s remark reveals, social inequality resides not in access to electric light and other accoutrements of modernity, but in a world order that places efficiency and wealth above life-affirming ways of life. This is our social problem, our energy problem, our ecological problem, and, generally, our political-economic problem.
The challenge of a social inquiry into energy-society relations awaits.
Subscribe to:
Posts (Atom)