Friday, November 15, 2013

Reviews of wind turbines’ effects on human health

Elsewhere on this blog, there is an inclusive list of reviews of the literature concerning human health and the noise from industrial wind turbines. It was compiled to provide a more complete list than the highly selective one presented by Simon Chapman of the University of Sydney that is often cited by wind power promoters. It also showed that while Chapman presented the reviews as reason to dismiss health concerns, most of them actually note the limited number and power of studies but that the evidence justifies further investigation and caution.

Most of the reviews, however, are government reports: nine of Chapman’s original 17, all of the three he later added, and five of the additional reviews listed earlier on this blog. Furthermore, of Chapman’s list, four are irrelevant (three not about wind turbines and one a press release about one of the other reviews), two are industry reports, and two are just rehashes of an earlier review. Only three of the reviews he originally listed merit attention:
  • Dani Fiumicelli: Wind farm noise dose response: A literature review. Acoustics Bulletin, November/December 2011 (pages 26-35). [link]
  • Loren Knopper & Christopher Ollson: Health effects and wind turbines: A review of the literature. Environmental Health, 2011 10:78. [link]
  • Committee on Environmental Impacts of Wind-Energy Projects, Board on Environmental Studies and Toxicology, Division on Earth and Life Studies, National Research Council of the National Academies [NRC]: Environmental impacts of wind-energy projects. 2007. [link]
Ignoring additional government, industry, and unpublished reviews, we also have the following (in reverse order by date):
  • Patrice Tran Ba Huy, l’Académie nationale de médecine [France]: Nuisances Sanitaires des Éoliennes Terrestres. [Health Impacts of Onshore Wind Trubines.] May 9 2017. [link]
  • J. H. Schmidt, M. Klokker: Health effects related to wind turbine noise exposure: a systematic review. PLoS One 9(12): e114183 (2014). [link]
  • R. J. McCunney, K. A. Mundt, W. D. Colby, R. Dobie, K. Kaliski, & M. Blais: Wind turbines and health: a critical review of the scientific literature. Journal of Occupational and Environmental Medicine 2014 Nov;56(11):e108-30. “The Canadian Wind Energy Association funded this project.” These authors produced a similar review for the American and Canadian Wind Energy Associations in 2009. [link]
  • Loren Knopper, Christopher Ollson, et al.: Wind turbines and human health. Frontiers in Public Health 2014;2:63. [link]
  • Ian Arra, Hazel Lynn, Kimberley Barker, Chiebere Ogbuneke, & Sophie Regalado: Systematic Review 2013: Association between Wind Turbines and Human Distress. Cureus 6(5):e183. [link]
  • Michael Nissenbaum: Industrial Wind Turbines, Human Variability, and Adverse Health Effects. New England College of Occupational and Environmental Medicine Reporter, Volume 2 Issue 38 Fall 2013. [link]
  • Håkan Enbom & Inga Malcus Enbom: Infraljud från vindkraftverk – en förbisedd hälsorisk. [Infrasound from wind turbines – an overlooked health hazard.] Lakartidningen [Journal of the Swedish Medical Association], 2013 Aug 7-20;110(32-33):1388-9. [link]
  • Donata Kurpas, Bozena Mroczek, Beata Karakiewicz, Krzysztof Kassolik, & Waldemar Andrzejewski: Health impact of wind farms. Annals of Agricultural and Environmental Medicine 2013, Vol 20, No 3, 595–605. [link]
  • Jennifer Roberts & Mark Roberts: Wind turbines: is there a human health risk? Journal of Environmental Health, April 2013, Volume 75, No. 8. [link]
  • Con Doolan: A Review of Wind Turbine Noise Perception, Annoyance and Low Frequency Emission. Wind Engineering, Volume 37, No. 1, 2013, pp 97-104. [link]
  • Amir Farboud, R. Crunkhorn, & A. Trinidade: ‘Wind turbine syndrome’: fact or fiction? Journal of Laryngology & Otology, Volume 127, Issue 03, March 2013, pp 222-226. [link]
  • Christopher Hanning & Alun Evans: Wind turbine noise [editorial]. BMJ [British Medical Journal] 2012;344:e1527. [link]
  • Richard R. James: Wind turbine infra and low-frequency sound: warning signs that were not heard. Bulletin of Science, Technology & Society, 32(2) 108-127 (2012). [link]
  • Erwin Quambusch & Martin Lauffer: Infraschall von Windkraftanlagen als Gesundheitsgefahr. [Infrasound from wind turbines as a health hazard.] ZFSH/SGB–Zeitschrift für die sozialrechtliche Praxis 08/2008. [link]
  • Claude-Henri Chouard, l’Académie nationale de médecine [France]: Le retentissement du fonctionnement des éoliennes sur la santé de l’homme. [Repercussions of wind turbine operations on human health.] March 2006. [link]
  • Marjolaine Villey-Migraine: Eoliennes, sons et infrasons: Effets de l’éolien industriel sur la sante des hommes [thesis]. [Wind turbines, noise, and infrasound: effects of industrial wind turbines on human health.] Université Paris II–Panthéon-Assas, December 2004. [link]
Vetting these eleven, we find that: Dani Fiumicelli is Technical Director (Head of Noise and Vibration) of Temple Group, a development consultancy in the U.K., and is an author of a 2013 report for the Scottish government to deny concerns of health effects; Loren Knopper is Senior Scientist and Christopher Ollson is Vice President for Strategic Development of Intrinsik, an environment and health consultancy in Ontario, and in their paper they disclose that they “have worked with wind power companies”, that Ollson “has acted as an expert witness for wind power companies during a number of legal hearings”, and that all of the authors of their 2014 review are also disclosed to be employees of Intrinsik: “the authors work for a consulting firm and have worked with wind power companies”; in 2015 the Canadian Wind Energy Association honored Knopper and Ollson with their R. J. Templin Award for “results that have served to significantly advance the wind energy industry in Canada”; Mark Roberts is Principal Scientist of Exponent, an engineering and scientific consulting firm involved in wind energy development; and Kurpas et al. mention in passing towards the end of their paper that they “are involved in community public consultations with the advocates of new projects”. These potential conflicts are noted in the following quotes (ordered by date).

Villey-Migraine: “Wind turbines emit infrasound, this is not disputed by anyone. ... It seems to us immoral on the part of this organization [Agency of the Environment and Energy Management] to assert, without any reference, that infrasound emitted by wind turbines is perfectly harmless, and furthermore, to make claims of so-called ‘action,’ but that we can not prove the impact of wind turbine infrasound on humans by epidemiological studies. ... Noise and infrasound emitted by wind turbines have a definite impact on the health of humans and can harm people’s lives. ... Wind developers have a responsibility to put in place adequate measures to reduce the risks of damage to the health of residents living near wind turbines by siting turbines no closer to homes than – not 500 m as suggested in their publications – but 1600 m considering audible noise and at least 5 km considering infrasound.” [translated]

Chouard: “Whether it is quite intense or it represents a more moderate noise pollution, noise is the complaint most frequently made concerning wind turbines. It can have a real impact, and so far disregarded, on human health. ... It would be desirable, as a precaution, to halt the construction of wind turbine facilities greater than 2.5 MW closer than 1500 meters from homes.” [translated]

NRC: “In the absence of extensive data, this report focuses mainly on appropriate methods for analysis and assessment and on recommended practices in the face of uncertainty. ... Low-frequency vibration and its effects on humans are not well understood. Sensitivity to such vibration resulting from wind-turbine noise is highly variable among humans. ... More needs to be understood regarding the effects of low-frequency noise on humans.”

Quambusch & Lauffer: “There is no doubt that wind turbines produce infrasound. In contrast to the pronouncements of the authorities, plant operators, and related institutions that infrasound is "completely harmless", there are an increasing number of scientists noting the health risks of infrasound. The risk is sufficient that new regulations are required for prevention. As long as and to the extent that the health risks are not prevented by technical or similar guidelines, construction and operation of these plants should be allowed only if they are out of sight of residential areas.” [translated]

Knopper &: Ollson [industry consultants, non-medical]: “wind turbines can be a source of annoyance for some people”

Fiumicelli [industry consultant, non-medical]: “uncertainty about human response to wind turbine noise”

James [acoustician, non-medical]: “There is sufficient research and history to link the sensitivity of some people to inaudible amplitude-modulated infra and low-frequency noise to the type of symptoms described by those living near industrial wind turbines.”

Hanning & Evans: “A large body of evidence now exists to suggest that wind turbines disturb sleep and impair health at distances and external noise levels that are permitted in most jurisdictions ... Sleep disturbance may be a particular problem in children, and it may have important implications for public health. ... Robust independent research into the health effects of existing wind farms is long overdue.”)

Farboud et al.: “There is some evidence of symptoms in patients exposed to wind turbine noise. The effects of infrasound require further investigation.”

Doolan: “Low-frequency noise levels from wind turbines may exceed audibility thresholds and thus it is possible that they are correlated with annoyance. A review of studies related to general low-frequency noise annoyance shows there are similarities with annoyance studies involving wind turbine noise. ... noise levels may comply with existing environmental noise guidelines based on the dB(A) scale yet still cause annoyance due to the uniqueness of low-frequency noise problems. However, there is very little information (level, spectral balance, temporal qualities, etc) regarding low-frequency noise in people’s homes affected by wind turbines. ... Thus more research is needed in understanding the fundamental aspects of wind turbine low-frequency noise generation, propagation and perception.”

Roberts & Roberts [industry consultants]: “The answer to the question of whether or not exposure to wind turbine sound is a human health risk is still under review and warrants further research. Although limited, research has demonstrated that LFS [low-frequency sound] can elicit adverse physical health effects, such as vibration or fatigue, as well as an annoyance or unpleasantness response. The current research on exposure to wind turbine sound and the mere presence of wind turbines have also demonstrated a significant annoyance response among study participants. But the association and particular pathway between LFS specifically generated from wind turbines, annoyance, and adverse physical health effects have yet to be fully characterized.” [These authors also ignore the Nissenbaum et al. study in Noise & Health.]

Kurpas et al. [industry consultants]: “Short description of state of the art: The nuisance caused by wind turbines is stereotypically linked with the noise that they produce. Nevertheless, the visual aspect of wind farms, opinions about them, and sensitivity to sound seem to be of the greater importance. ... Health effects are more probably associated with some environmental factors leading to annoyance or frustration. All types of studies share the same conclusion: wind turbines can provoke annoyance. ... The influence of wind turbines on human emotional and physical health is a relatively new field of research. Further analyses of these issues are justified, especially because none of the studies published in peer-reviewed journals so far meet the criteria for cohort or case-control studies. ... The authors did not analyse coherent publications or website documents (study by M. Alves-Pereira and N.C. Branco and the study by N. Pierpont).” [The authors also missed the Nissenbaum 2012 paper in Noise & Health, which appeared after their submission. And they assert that noise from wind turbines cause only subjective effects, despite the evidence under review of interference with, e.g., sleep, and physiological effects.]

Enbom & Malcus Enbom: “Infrasound from wind turbines affects the inner ear and is a potential health risk for people with migraine or other type of central sentitisation. Regulations for construction of wind turbines should be revised, taking this fact into account.” [translated]

Nissenbaum: “In summary, in many IWT projects, the preconstruction sound modeling has underestimated the eventual real world sound levels those turbine projects eventually produce. When coupled with the underappreciated human physiological responses to the type of noise large turbines produce (adverse sleep and mental health effects), this has had real world consequences for those living near them. The relationship of noise to sleep disturbances is established. The biological plausibility of sleep disturbances resulting in ill health is settled science. Chronic noise exposure leads to chronic sleep disturbance in many of those exposed, often resulting in ill health. Observed adverse human effects must trump preconstruction sound modeling; changes in practice must occur when there are errors. It’s all about distance when siting decisions are made.”

Arra et al.: “In this review, we have demonstrated the presence of reasonable evidence (Level Four and Five) that an association exists between wind turbines and distress in humans. The existence of a dose-response relationship (between distance from wind turbines and distress) and the consistency of association across studies found in the scientific literature argues for the credibility of this association.”

Knopper, Ollson, et al. [industry consultants, non-medical]: “Setbacks should be sound-based rather than distance-based alone. Preference should be given to sound emissions of ≤40 dB(A) for non-participating receptors, measured outside, at a dwelling, and not including ambient noise. ... Post construction monitoring should be common place to ensure modeled sound levels are within required noise limits. If sound emissions from wind projects is in the 40–45 dB(A) range for non-participating receptors, we suggest community consultation and community support. Setbacks that permit sound levels >45 dB(A) (wind turbine noise only; not including ambient noise) for non-participating receptors directly outside a dwelling are not supported due to possible direct effects from audibility and possible levels of annoyance above background. When ambient noise is taken into account, wind turbine noise can be >45 dB(A), but a combined wind turbine–ambient noise should not exceed >55 dB(A) for non-participating and participating receptors. Our suggested upper limit is based on WHO conclusions that noise above 55 dB(A) is ‘considered increasingly dangerous for public health,’ is when ‘adverse health effects occur frequently, a sizeable proportion of the population is highly annoyed and sleep-disturbed’ and ‘cardiovascular effects become the major public health concern, which are likely to be less dependent on the nature of the noise.’”

Schmidt and Klokker: “At present it seems reasonable to conclude that noise from wind turbines increases the risk of annoyance and disturbed sleep in exposed subjects in a dose-response relationship. There seems to be a tolerable limit of around LAeq of 35 dB. Logically, accepting higher limits in legislations may lead to increased numbers of annoyed subjects. It therefore seems reasonable to conclude that a cautious approach is needed when planning future wind farms. Furthermore, there is an indication that noise annoyance and sleep disturbance are related and that disturbed sleep potentially can lead to adverse health effects. These conclusions are, however, affected by a potential risk for selection and information bias even in the larger cross-sectional studies providing the current best evidence. The evidence for adverse health effects other than sleep disturbance is primarily supported by case-series reports which certainly may be affected by various sources of bias. Larger cross-sectional surveys have so far been unable to document a relationship between various symptoms such as tinnitus, hearing loss, vertigo, headache and exposure to wind turbine noise. One limitation causing this could be that most studies so far have only measured LAeq or Lden. An additional focus on the measurement of low-frequency sound exposure as well as a more thorough characterisation of the amplitude modulated sound and the relationship between objective and subjective health parameters could lead to different conclusions in the future. Finally, in regards to the objective measurement of health-related disorders in relation to wind turbine noise, it would be valuable to demonstrate if such health-related outcomes fluctuate depending on exposure to wind turbine noise.”

Tran Ba Huy: “[L]e caractère intermittent, aléatoire, imprévisible, envahissant du bruit généré par la rotation des pales, survenant lorsque le vent se lève, variant avec son intensité, interdisant toute habituation, peut indubitablement perturber l’état psychologique de ceux qui y sont exposés. Ce sont notamment les modulations d’amplitudes causées par le passage des pales devant le mât qui sont dénoncées comme particulièrement dérangeantes.” [The intermittent, random, unpredictable, invasive character of the noise generated by the rotation of the blades, arising when the wind rises and varying along with its intensity, preventing habituation, can undoubtedly disturb the psychological state of those who are exposed to it. These include amplitude modulation caused by the passage of the blades in front of the mast, which is noted as particularly disturbing.] “[L]e groupe de travail recommande: ... de revenir pour ce qui concerne leur bruit (et tout en laissant les éoliennes sous le régime des Installations Classées pour le Protection de l’Environnement) au décret du 31 août 2006 relatif à la lutte contre les bruits du voisinage (relevant du code de Santé publique et non de celui de l’Environnement), ramenant le seuil de déclenchement des mesures d’émergence à 30 dB A à l’extérieur des habitations et à 25 à l’intérieur.” [The working group recommends returning to the decree of 31 August 2006 concerning the fight against neighborhood noise, reducing the the threshold for emergency measures to [ambient levels] 30 dBA outside residences and 25 dBA inside [limiting wind turbine noise to +5 dBA in daytime (7am–10pm) and +3 dBA at night (10pm–7am)].]


To undertake your own review, click here for a list of, and access to, 21 published studies (2003–2012) of health effects of industrial wind turbine noise.

Also see the tables from “Health Effects Related to Wind Turbine Noise Exposure: A Systematic Review” by JH Schmidt and M Klokker (2014)

wind power, wind energy, wind turbines, wind farms, human rights